13.1. The fundamental solution.

(a) Arrive at the formula for K_t by solving an ODE on the Fourier side for t > 0 for solutions u to the heat equation with $u(t, \cdot) \in \mathcal{S}(\mathbb{R}^n)$. Hint: The letters x and ξ somehow resemble themselves.

(b) Prove that K_t is the fundamental solution i.e. extend K_t by $K_t \equiv 0$ for $t \leq 0$. Define the distribution $u_K : \mathcal{S}(\mathbb{R}^{n+1}) \to \mathbb{R} : \varphi \to \int_{\mathbb{R} \times \mathbb{R}^n} K(t, x) \varphi(t, x) \, dt dx$ and prove that in the distributional sense $Pu_K = \delta_0$ where δ_0 is Dirac's delta distribution $\varphi \to \varphi(0)$.

(c) Prove that there is C > 0 such that for every t > 0, $\|\nabla_x K_t\|_{L^1(\mathbb{R}^n,\mathbb{R}^n)} \leq \frac{C}{\sqrt{t}}$. Deduce that

$$\left\|\Delta_x K_t\right\|_{L^1(\mathbb{R}^n)} \le \frac{C}{t}, \qquad \left\|\Delta_x^2 K_t\right\| \le \frac{C}{t^2}.$$

Hint: Use $K_t = K_{t/2} * K_{t/2}$ for the last inequality.

13.2. Gelfand Triples. Let H be a Hilbert space, $V \subset H$ be a dense subspace. Suppose that V is a Hilbert space in its own right with an inner product $\langle \cdot, \cdot \rangle_V$. Identify H with H^* with the canonical isomorphism. Take $\iota : V \to H$ the inclusion map, and $\iota^* : H^* \to V^*$ which are both injective and have dense image by FA I. Under the identifications, $u \in H$ is sent to $V \to \mathbb{R} : v \mapsto \langle u, v \rangle_H$. Thus

$$V \subset H \cong H^* \subset V^*.$$

Take $B: V \times V \to \mathbb{R}$ to be a symmetric bilinear form and suppose there are constants $\delta > 0, c > 0, C > 0$ such that

$$\delta \|v\|_V^2 - c \|v\|_H^2 \le B(v, v) \le C \|v\|_V^2$$

for all $v \in V$. Define $A : \operatorname{dom}(A) \to H$ by

$$\operatorname{dom}(A) := \left\{ u \in V : \sup_{v \in V} \frac{|B(u,v)|}{\|v\|_H} < \infty \right\}, \ \langle Au, v \rangle_H := B(u,v) \text{ for all } v \in V.$$

(a) Prove that A is self-adjoint.

Hint: Follow the hints given at the end of Remark 6.3.8.

(b) Prove that -A generates a strongly continuous semigroup.

Hint: Use Theorem 7.3.10.

(c) Recast the infinitesimal generators of Exercises 12.2 (p=2) and 12.3 in the light of Gelfand triples.

 $20\mathrm{th}$ May 2016

1/1

13.3. Maximal principle and exponential decay. Let T > 0 and let $\Omega \subset \mathbb{R}^n$ be a bounded, open domain. Set $\Omega_T := (0, T] \times \Omega$ and $\Gamma_T := (\{0\} \times \Omega) \cup ([0, T] \times \partial \Omega)$. Let $Lu = \sum_{i,j} a_{i,j} \partial_i \partial_j u + \sum_{i=1}^n b_i \partial_i u + cu$ for $u \in C^2(\Omega_T)$, $a_{ij} = a_{ji}, b_i, c \in C^0(\overline{\Omega_T})$ and $i, j = 1, \ldots, n$ with

$$\sum_{i,j=1}^{n} a_{ij}(t,x)\xi_i\xi_j \ge \delta |\xi|^2$$

for all $(t, x) \in \overline{\Omega_T}$ and all $\xi \in \mathbb{R}^n$. Put $Pu = Lu - \partial_t u$.

(a) Let $c \leq 0, u \in C^2(\Omega_T) \cap C^0(\overline{\Omega_T}), Pu \geq 0$, then prove that

$$\max_{\overline{\Omega_T}} u \le \max_{\Gamma_T} u^+$$

where $u^+(x) := \max(u(x), 0)$ is the positive part of u.

Hint: Mimic the proof of the maximum principle for c = 0 (Theorem 2).

(b) Prove that if there is $\gamma \in \mathbb{R}$ such that $-c \geq \gamma > 0$, then for $g \in L^{\infty}(\Omega)$ and $u \in C^2(\Omega_T) \cap C^0(\overline{\Omega_T})$ solution of

$$\begin{cases} Pu = 0 \text{ on } \Omega_T \\ u = 0 \text{ on } (0, T) \times \partial \Omega \\ u = g \text{ on } \{0\} \times \Omega, \end{cases}$$

we get

$$|u(t,x)| \le \|g\|_{L^{\infty}(\mathbb{R}^n)} e^{-\gamma t}$$

for all $(t, x) \in \overline{\Omega_T}$.

13.4. Fractional derivatives for p = 2. This exercise serves as prelude to the Besov spaces which will appear soon in the lecture.

Define¹

$$H^{s}(\mathbb{R}^{n}) := \{ u \in L^{2}(\mathbb{R}^{n}) : (2\pi)^{-n} \int_{\mathbb{R}^{n}} (1 + |\xi|^{2})^{s} |\hat{u}(\xi)|^{2} \, d\xi < \infty \}$$

for all $s \geq 0$. For $u, v \in H^s(\mathbb{R}^n)$, define the scalar product²

$$\langle u, v \rangle_s := (2\pi)^{-n} \int_{\mathbb{R}^n} (1+|\xi|^2)^s \mathcal{F}(u) \overline{\mathcal{F}(v)} \, \mathrm{d}\xi.$$

20th May 2016

 $^{^1\}mathrm{Recall}$ the Fourier transform and its properties from exercises 8.4 and 8.5.

²As always we use both the hat notation and \mathcal{F} to denote the Fourier transform on $L^2(\mathbb{R}^n)$.

(a) Prove $H^0(\mathbb{R}^n) = L^2(\mathbb{R}^n)$. Prove that H^s is a Hilbert space.

Hint: For the second statement use completeness of $L^2((1+|\xi|^2)^s d\xi) \subset L^2(d\xi)$.

(b) Prove that $W^{k,2}(\mathbb{R}^n) = H^k(\mathbb{R}^n)$ for $k \in \mathbb{N}$.

Hint: Start with k = 1 to test the ground. Prove the equivalence of the norms on $\mathcal{S}(\mathbb{R}^n)$.

(c) Prove that for 2s > n, $H^s(\mathbb{R}^n)$ imbeds continuously into $C^0(\mathbb{R}^n)$.

Hint: Use the Fourier inverse formula.

Please hand in your solutions for this sheet by Monday 30/05/2016. Your teaching assistants will put your corrected sheets in their pigeonholes in F28.