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13.1. The fundamental solution.

(a) Arrive at the formula for Kt by solving an ODE on the Fourier side for t > 0 for
solutions u to the heat equation with u(t, ·) ∈ S(Rn). Hint: The letters x and ξ
somehow resemble themselves.

(b) Prove that Kt is the fundamental solution i.e. extend Kt by Kt ≡ 0 for t ≤ 0.
Define the distribution uK : S(Rn+1)→ R : ϕ→

∫
R×Rn K(t, x)ϕ(t, x) dtdx and prove

that in the distributional sense PuK = δ0 where δ0 is Dirac’s delta distribution
ϕ→ ϕ(0).

(c) Prove that there is C > 0 such that for every t > 0, ‖∇xKt‖L1(Rn,Rn) ≤
C√
t
.

Deduce that

‖∆xKt‖L1(Rn) ≤
C

t
,

∥∥∥∆2
xKt

∥∥∥ ≤ C

t2
.

Hint: Use Kt = Kt/2 ∗Kt/2 for the last inequality.

13.2. Gelfand Triples. Let H be a Hilbert space, V ⊂ H be a dense subspace.
Suppose that V is a Hilbert space in its own right with an inner product 〈·, ·〉V .
Identify H with H∗ with the canonical isomorphism. Take ι : V → H the inclusion
map, and ι∗ : H∗ → V ∗ which are both injective and have dense image by FA I. Under
the identifications, u ∈ H is sent to V → R : v 7→ 〈u, v〉H . Thus

V ⊂ H ∼= H∗ ⊂ V ∗.

Take B : V ×V → R to be a symmetric bilinear form and suppose there are constants
δ > 0, c > 0, C > 0 such that

δ ‖v‖2
V − c ‖v‖

2
H ≤ B(v, v) ≤ C ‖v‖2

V

for all v ∈ V . Define A : dom(A)→ H by

dom(A) :=
{
u ∈ V : sup

v∈V

|B(u, v)|
‖v‖H

<∞
}
, 〈Au, v〉H := B(u, v) for all v ∈ V.

(a) Prove that A is self-adjoint.

Hint: Follow the hints given at the end of Remark 6.3.8.

(b) Prove that −A generates a strongly continuous semigroup.

Hint: Use Theorem 7.3.10.

(c) Recast the infinitesimal generators of Exercises 12.2 (p=2) and 12.3 in the light
of Gelfand triples.
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13.3. Maximal principle and exponential decay. Let T > 0 and let Ω ⊂ Rn

be a bounded, open domain. Set ΩT := (0, T ]×Ω and ΓT := ({0}×Ω)∪ ([0, T ]×∂Ω).
Let Lu = ∑

i,j ai,j∂i∂ju + ∑n
i=1 bi∂iu + cu for u ∈ C2(ΩT ), aij = aji, bi, c ∈ C0(ΩT )

and i, j = 1, . . . , n with
n∑

i,j=1
aij(t, x)ξiξj ≥ δ |ξ|2

for all (t, x) ∈ ΩT and all ξ ∈ Rn. Put Pu = Lu− ∂tu.

(a) Let c ≤ 0, u ∈ C2(ΩT ) ∩ C0(ΩT ), Pu ≥ 0, then prove that

max
ΩT

u ≤ max
ΓT

u+

where u+(x) := max(u(x), 0) is the positive part of u.

Hint: Mimic the proof of the maximum principle for c = 0 (Theorem 2).

(b) Prove that if there is γ ∈ R such that −c ≥ γ > 0, then for g ∈ L∞(Ω) and
u ∈ C2(ΩT ) ∩ C0(ΩT ) solution of

Pu = 0 on ΩT

u = 0 on (0, T )× ∂Ω
u = g on {0} × Ω,

we get

|u(t, x)| ≤ ‖g‖L∞(Rn) e
−γt

for all (t, x) ∈ ΩT .

13.4. Fractional derivatives for p = 2. This exercise serves as prelude to the
Besov spaces which will appear soon in the lecture.

Define1

Hs(Rn) := {u ∈ L2(Rn) : (2π)−n
∫
Rn

(1 + |ξ|2)s |û(ξ)|2 dξ <∞}

for all s ≥ 0. For u, v ∈ Hs(Rn), define the scalar product2

〈u, v〉s := (2π)−n
∫
Rn

(1 + |ξ|2)sF(u)F(v) dξ.
1Recall the Fourier transform and its properties from exercises 8.4 and 8.5.
2As always we use both the hat notation and F to denote the Fourier transform on L2(Rn).
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(a) Prove H0(Rn) = L2(Rn). Prove that Hs is a Hilbert space.

Hint: For the second statement use completeness of L2((1 + |ξ|2)s dξ) ⊂ L2(dξ).

(b) Prove that W k,2(Rn) = Hk(Rn) for k ∈ N.

Hint: Start with k = 1 to test the ground. Prove the equivalence of the norms on
S(Rn).

(c) Prove that for 2s > n, Hs(Rn) imbeds continuously into C0(Rn).

Hint: Use the Fourier inverse formula.

Please hand in your solutions for this sheet by Monday 30/05/2016. Your
teaching assistants will put your corrected sheets in their pigeonholes in
F28.
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