### 13.1. The fundamental solution.

(a) Arrive at the formula for $K_{t}$ by solving an ODE on the Fourier side for $t>0$ for solutions $u$ to the heat equation with $u(t, \cdot) \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Hint: The letters $x$ and $\xi$ somehow resemble themselves.
(b) Prove that $K_{t}$ is the fundamental solution i.e. extend $K_{t}$ by $K_{t} \equiv 0$ for $t \leq 0$. Define the distribution $u_{K}: \mathcal{S}\left(\mathbb{R}^{n+1}\right) \rightarrow \mathbb{R}: \varphi \rightarrow \int_{\mathbb{R} \times \mathbb{R}^{n}} K(t, x) \varphi(t, x) \mathrm{d} t \mathrm{~d} x$ and prove that in the distributional sense $P u_{K}=\delta_{0}$ where $\delta_{0}$ is Dirac's delta distribution $\varphi \rightarrow \varphi(0)$.
(c) Prove that there is $C>0$ such that for every $t>0,\left\|\nabla_{x} K_{t}\right\|_{L^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)} \leq \frac{C}{\sqrt{t}}$. Deduce that

$$
\left\|\Delta_{x} K_{t}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} \leq \frac{C}{t}, \quad\left\|\Delta_{x}^{2} K_{t}\right\| \leq \frac{C}{t^{2}}
$$

Hint: Use $K_{t}=K_{t / 2} * K_{t / 2}$ for the last inequality.
13.2. Gelfand Triples. Let $H$ be a Hilbert space, $V \subset H$ be a dense subspace. Suppose that $V$ is a Hilbert space in its own right with an inner product $\langle\cdot, \cdot\rangle_{V}$. Identify $H$ with $H^{*}$ with the canonical isomorphism. Take $\iota: V \rightarrow H$ the inclusion map, and $\iota^{*}: H^{*} \rightarrow V^{*}$ which are both injective and have dense image by FA I. Under the identifications, $u \in H$ is sent to $V \rightarrow \mathbb{R}: v \mapsto\langle u, v\rangle_{H}$. Thus

$$
V \subset H \cong H^{*} \subset V^{*}
$$

Take $B: V \times V \rightarrow \mathbb{R}$ to be a symmetric bilinear form and suppose there are constants $\delta>0, c>0, C>0$ such that

$$
\delta\|v\|_{V}^{2}-c\|v\|_{H}^{2} \leq B(v, v) \leq C\|v\|_{V}^{2}
$$

for all $v \in V$. Define $A: \operatorname{dom}(A) \rightarrow H$ by

$$
\operatorname{dom}(A):=\left\{u \in V: \sup _{v \in V} \frac{|B(u, v)|}{\|v\|_{H}}<\infty\right\},\langle A u, v\rangle_{H}:=B(u, v) \text { for all } v \in V .
$$

(a) Prove that $A$ is self-adjoint.

Hint: Follow the hints given at the end of Remark 6.3.8.
(b) Prove that $-A$ generates a strongly continuous semigroup.

Hint: Use Theorem 7.3.10.
(c) Recast the infinitesimal generators of Exercises $12.2(\mathrm{p}=2)$ and 12.3 in the light of Gelfand triples.
13.3. Maximal principle and exponential decay. Let $T>0$ and let $\Omega \subset \mathbb{R}^{n}$ be a bounded, open domain. Set $\Omega_{T}:=(0, T] \times \Omega$ and $\Gamma_{T}:=(\{0\} \times \Omega) \cup([0, T] \times \partial \Omega)$. Let $L u=\sum_{i, j} a_{i, j} \partial_{i} \partial_{j} u+\sum_{i=1}^{n} b_{i} \partial_{i} u+c u$ for $u \in C^{2}\left(\Omega_{T}\right), a_{i j}=a_{j i}, b_{i}, c \in C^{0}\left(\overline{\Omega_{T}}\right)$ and $i, j=1, \ldots, n$ with

$$
\sum_{i, j=1}^{n} a_{i j}(t, x) \xi_{i} \xi_{j} \geq \delta|\xi|^{2}
$$

for all $(t, x) \in \overline{\Omega_{T}}$ and all $\xi \in \mathbb{R}^{n}$. Put $P u=L u-\partial_{t} u$.
(a) Let $c \leq 0, u \in C^{2}\left(\Omega_{T}\right) \cap C^{0}\left(\overline{\Omega_{T}}\right), P u \geq 0$, then prove that

$$
\max _{\overline{\Omega_{T}}} u \leq \max _{\Gamma_{T}} u^{+}
$$

where $u^{+}(x):=\max (u(x), 0)$ is the positive part of $u$.
Hint: Mimic the proof of the maximum principle for $c=0$ (Theorem 2).
(b) Prove that if there is $\gamma \in \mathbb{R}$ such that $-c \geq \gamma>0$, then for $g \in L^{\infty}(\Omega)$ and $u \in C^{2}\left(\Omega_{T}\right) \cap C^{0}\left(\overline{\Omega_{T}}\right)$ solution of

$$
\left\{\begin{array}{rlrl}
P u & =0 \text { on } & \Omega_{T} \\
u & =0 \text { on } & & (0, T) \times \partial \Omega \\
u & =g \text { on } & & \{0\} \times \Omega,
\end{array}\right.
$$

we get

$$
|u(t, x)| \leq\|g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} e^{-\gamma t}
$$

for all $(t, x) \in \overline{\Omega_{T}}$.
13.4. Fractional derivatives for $p=2$. This exercise serves as prelude to the Besov spaces which will appear soon in the lecture.

Define ${ }^{1}$

$$
H^{s}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right):(2 \pi)^{-n} \int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\hat{u}(\xi)|^{2} \mathrm{~d} \xi<\infty\right\}
$$

for all $s \geq 0$. For $u, v \in H^{s}\left(\mathbb{R}^{n}\right)$, define the scalar product ${ }^{2}$

$$
\langle u, v\rangle_{s}:=(2 \pi)^{-n} \int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s} \mathcal{F}(u) \overline{\mathcal{F}(v)} \mathrm{d} \xi .
$$

[^0]| D-math | Functional Analysis II | ETH Zürich |
| :--- | :---: | ---: |
| Prof. D. A. Salamon | Exercise Sheet 13 | FS 2016 |

(a) Prove $H^{0}\left(\mathbb{R}^{n}\right)=L^{2}\left(\mathbb{R}^{n}\right)$. Prove that $H^{s}$ is a Hilbert space.

Hint: For the second statement use completeness of $L^{2}\left(\left(1+|\xi|^{2}\right)^{s} \mathrm{~d} \xi\right) \subset L^{2}(\mathrm{~d} \xi)$.
(b) Prove that $W^{k, 2}\left(\mathbb{R}^{n}\right)=H^{k}\left(\mathbb{R}^{n}\right)$ for $k \in \mathbb{N}$.

Hint: Start with $k=1$ to test the ground. Prove the equivalence of the norms on $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
(c) Prove that for $2 s>n, H^{s}\left(\mathbb{R}^{n}\right)$ imbeds continuously into $C^{0}\left(\mathbb{R}^{n}\right)$.

Hint: Use the Fourier inverse formula.
Please hand in your solutions for this sheet by Monday 30/05/2016. Your teaching assistants will put your corrected sheets in their pigeonholes in F28.


[^0]:    ${ }^{1}$ Recall the Fourier transform and its properties from exercises 8.4 and 8.5.
    ${ }^{2}$ As always we use both the hat notation and $\mathcal{F}$ to denote the Fourier transform on $L^{2}\left(\mathbb{R}^{n}\right)$.

