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13.1. The fundamental solution.

(a) Arrive at the formula for K; by solving an ODE on the Fourier side for ¢ > 0 for
solutions u to the heat equation with u(t,-) € S(R"). Hint: The letters x and &
somehow resemble themselves.

(b) Prove that K; is the fundamental solution i.e. extend K; by K; = 0 for ¢ < 0.
Define the distribution ug : S(R™™) = R : ¢ — [p.pn K(t,2)p(t, ) dtdz and prove
that in the distributional sense Pux = &g where &y is Dirac’s delta distribution

v — ©(0).

(c) Prove that there is ' > 0 such that for every ¢ > 0, |[VoK||p1gn gny < %
Deduce that

C
<

C
1A K|l 1y < n S

Al
Hint: Use K; = K/ * Ky, for the last inequality.
Solution:
(a) Assume for t > 0, u(t,-) € S(R") is solution to the heat equation d,u = Au with
u(0, -) = ug. Then taking the Fourier transform of this equation with respect to x, we
get with local notation G(u)(t,€&) = [zn e @S u(t, x) du,

0,G(u)(t,€) = G(Ou)(t,€) = G(Au)(1,€) = — [¢]* G(u) (¢, )
for all (¢,x) € Ry x R™. Thus for every £ € R", we solve the ODE in ¢ to get

G(u)(t,€) = e 1 F (ug) ()

for all £ € R™ and ¢t > 0. Now if we apply the inverse Fourier transform in £ to this
formula for ¢t > 0, then we find

u(t, r) = (K * uo)(z)

for all t > 0 and x € R™, because of products going over to convolution products under
~ 2
Fourier transforms and K,(¢) = e €I as can be found in the solution of exercise 12.2.

(b) Let ¢ € C°(R™1). We want to prove that K; extended by zero for ¢ < 0, fulfils

I:= /}Rn+1 K(t,z)(=0wp(t, ) — Ap(t, x)) dadt = ¢(0,0).
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So we calculate

[ = lim /5 ” / Kt o) (~Oup(t,v) — Ap(t, o) dadt

6—0+

= lim /;O/ P(Ky(t,z))p dzdt + lim Ks(x)p(6,x) dz

6—0t 6—0t JRn
§—0t JRrRn
= ¢(0,0)

where the first line uses dominated convergence, the second one uses integration by
part in the space variables (no boundary terms due to compact support.) and the
time variable (only one boundary term, the other one vanishes.). In the third line, we
use PK; =0 for t > 0 and [z, K; =1 for ¢ > 0. What remains to be proven is that

Jim [ Ka(@)(p(0,2) = ¢(0,0)) do =0
We use the fact proven in class that lims_,o+ f\len K (z)dx =0forallnp > 0. Fixe > 0.
Then, there is p > 0 such that for |(¢,z) — (0,0)] < p, then |p(t,z) — ©(0,0)] < 5.
Now for n = £ there is o > 0 such that for all 0 < ¢ < a,

K (z)de < ———.
/wIZW A Il oo ey

Now for § < min(a, §), we have

[, Es(w)(e0.2) = 9(0,0) da

< 2|l oo (gny Ks(x) da + sup [p(z,6) — ¢(0,0)] Ks(z) dz
jo|>4 2l <2 By (0)
< € I €
—4+ - =e€.
22

This proves that K, is the fundamental solution of P.

. o
(c) V.Ki(x) = 5 Ki(z), so by rescaling |V, K (z)| = %ﬁ Jan €712 2] = %

-
AL Ki(x) = (% — 5;)Ki(2), and so again by rescaling, we have [|A, K| 11 gny < =

Now from A2K; = 0} K;, we can write K; = Ky5 * K;/5 and so
1 1
AiKt = afKt = Z(ath/Q) * (ath/2> = 1A$Kt/2 * Ath/Q.

By Young’s inequality we have

A2K YAkl <<
H zit ) 4” T2 gy = 2

Ll(RTL
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13.2. Gelfand Triples. Let H be a Hilbert space, V' C H be a dense subspace.
Suppose that V' is a Hilbert space in its own right with an inner product (:,-), .
Identify H with H* with the canonical isomorphism. Take ¢ : V' — H the inclusion
map, and ¢* : H* — V* which are both injective and have dense image by FA 1. Under
the identifications, v € H is sent to V' — R : v — (u,v) . Thus

VcHZH CV*

Take B : V xV — R to be a symmetric bilinear form and suppose there are constants
0>0,c>0,C >0 such that

S|vlly, = ellvllyy < Bv,v) < Clolly
for all v € V. Define A : dom(A) — H by

dom(A) := {U eV: supM

< oo}, (Au,v) = B(u,v) for allv e V.
vev vl
(a) Prove that A is self-adjoint.
Hint: Follow the hints given at the end of Remark 6.3.8.
(b) Prove that —A generates a strongly continuous semigroup.

Hint: Use Theorem 7.3.10.

(c) Recast the infinitesimal generators of Exercises 12.2 (p=2) and 12.3 in the light
of Gelfand triples.

Solution:

(a) That A is symmetric comes from B being symmetric. We start by proving that
A+ cl :dom(A) — H is bijective. We observe that for all x € V', we have

dllzlly < Bw, ) +cllzly < Cllzlly + ¢zl < (C+C'e) |y

where C” is the norm of «. Thus V' x V — R : (u,v) — ¢ (u,v); + B(u,v) is a scalar
product equivalent to (:,-),, on V. So it makes V" also into a Hilbert space. Now by
Riesz representation theorem for Hilbert spaces, we have for f € H, which defines a
linear functional on V' by v +— (v, f), that there is u € V' such that

C<uaU>H —I—B(u,v) = <f7U>H
for all v € V. By Cauchy-Schwarz, we get that

B
o B0

< £l + € ol < oo.
oty Tollg
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Hence v € dom(A) and cu + Au = f by density of V in H. So in particular, we
have that A 4 ¢I : dom(A) — H is surjective. Also for all u € dom(A), we have
Au + cu = 0 that,

0 |ully < Blu,u) + ¢ |lullf; = (Au+ cu, u)yy = 0.
Thus this norm is zero so u = 0.

Now as for every v* € V*, there is a unique u € V' such that B(u, ) +c(u, )z = v*(-).
This extends the map ¢l + A : dom(A) C V — H C V* into an isomorphism from
V' — V* which sends dom(A) to H. Now as H C V* is dense, so is dom(A) in V.

Next, let us prove that for u € H, if there is ¢ > 0 such that for all v € dom(A), we
have

(u, Av) | < ey/B(v,v) + c|lv])%,
then u € V.

To prove this, we use density of dom(A) in V' to extend the map v — (u, Av), +
¢ (u, v) uniquely to a map v* € V*. Then, there is as before, v’ € V such that

B(u',v) + ¢ (u',v) = v*(v)
for all v € V. Thereby, for v € dom(A), we obtain

(', Avy y + c (' vy = B, v) + ¢ (W', 0) = (u, Av) ; + ¢ (u,v)
by definition of A. As A+ ¢l : dom(A) — H is surjective, we have that u =u' € V.
Thus assume that v, w € H such that for all v € dom(A), we have

(u, Av) i = (W, v) 5 .

By the previous argument, as we have

[(, A0) ] < Nfwlly Nollyy < el v/ Bo,v) + ol

we get u € V. Thus, B(u,v) = (w,v), for all v € dom(A), which, by density of
dom(A) in V, continues to hold for all v € V. This exactly means that v € dom(A)
and that Au = w. Thus proving that A is self-adjoint.

(b) By the previous point, —A : dom(A) — H is self-adjoint.
(—Av,v) = =B(v,v) < clully =8 |lully < cllully -

Hence the hypotheses of 7.3.10 are met and so —A is infinitesimal generator of a
strongly continuous self-adjoint semigroup.
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(c) Forexercise 12.2., we take H = L*(R"), V = W?(R") and B(u,v) = (Vu, V0) 2
for all (u,v) € V x V. Then we get the lower bound B(u,u) = HVuH;(Rn) =
||u||12/V172(]R") — ||u||ig(Rn), so ¢ = § = 1. Furthermore, we have B(u,u) < [[ully1.2(gn-
So C' =1, and by elliptic regularity, we get A = —A : W2%(R") — L*(R").

For exercise 12.3, we take V = Wy *(Q), H = L*(Q), B(u,v) == [, Oiu a;; d;u for all
(u,v) € V x V, then we can take ¢ = 0. The lower bound is given by ellipticity of the
a;; and the upper bound by boundedness of the coefficients. By elliptic regularity, we
have A = —L : W22(Q) N W, *(Q) — L*(Q).

13.3. Maximal principle and exponential decay. Let T'> 0 and let 2 C R"”
be a bounded, open domain. Set Qp := (0,7] x Q and I'r := ({0} x Q) U ([0, T] x 0Q).
Let Lu = Y, 5 a; ;0;0;u + X bjdyu + cu for u € C*(Qr), a; = aji, bi,c € C°(Qr)
and 4,5 = 1,...,n with

> ait @) > o1l
ij=1
for all (t,2) € Qr and all £ € R*. Put Pu = Lu — d;u.
(a) Let ¢ <0, u € C*(Q7)NC°Qr), Pu > 0, then prove that

max u < maxu’

QT I‘T
where vt (x) := max(u(z),0) is the positive part of u.
Hint: Mimic the proof of the maximum principle for ¢ = 0 (Theorem 2).

(b) Prove that if there is v € R such that —¢ > v > 0, then for g € L*(2) and
u € C?(Q7) N C°(Qr) solution of

Pu=0on Qf
u=0on (0,7) x 0N
u=gon {0} xQ,

we get
Ju(t, 2)| < 11l oo (gny €

for all (t,z) € Qr.

Solution:
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(a) We simply repeat the proof of Theorem 2 (maximum principle for parabolic
equations) word for word.

We assume M := maxg-u > maxr, u™ > 0. Choose (ty, z9) € Qr with u(t, v0) = M.
Let 6 > 0 such that

v(t,x) = e~ 0(t=to)—|o—zof?

has the property
Po(t,x) = |4 Y ay(t, x)(z; — (x0)i) (x5 — (20);) — 2 au(t, @)
ij=1 i=1

=23 " bi(t, ) (zi — (20)i) + c(t, x) + 0 e~ 0lt—to)~lr—mol” -
i=1

for all (¢,z) € Qr which is possible as €2 and 7" > 0 are bounded. Next choose € > 0
such that

e —1) < M —supu™.
I'r

Define u, := u + ev. Then we still have

max 1] < maxu’+emax v, < maxutee’’ < M€ = u(ty, vo)+ev(ty, 20) < max u,,
Lr I'r I'r I'r Qr

but now we also have
Pu, = Pu+ ePv > 0.

Therefore, choose (t1,71) € Qp with u(t, ;) = maxg  Ue > maxr, u. > 0. Then,
we have

n n

Pu(ty,z1) = Y ag(t1,1)005uc(ts, x1) + Y bi(tr, x1)Opue(tr, 21)

ij=1 i=1
+ C(tl, x1>’u€(t1, I‘l) — (9tu€(t1, xl) S 0

where every single summands is < 0 due to u, attaining a maximum and ¢ < 0. This
provides us with a contradiction.

(b) We look at v(t,z) = u(t,z) — ||g|| foc(qy €7 for (¢, 2) € Qr. Then we see that as
u|(07oo)><39 = 0, that

maxv < 0.
I'r
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Furthermore, we have that
Pu(t,z) =0 —=clgllpeigy e =19l = 0.
for (t,x) € Qp. Thus, we may apply (a), to conclude that

maxv < 0.
Qp

This translates into

ut, ) < [lgll ooy e

for (t,2) € Qp. The same argument with o(t,2) = —u(t, ) — ||gl| yoo(q) e~ delivers
the second inequality

||g”L°°(Q) e <ult,x)
for (t,x) € Qr.

13.4. Fractional derivatives for p = 2. This exercise serves as prelude to the
Besov spaces which will appear soon in the lecture.

Define!

HY(R") = {u € L&) : (20)7" [ (14 |6P) @) dé < oo)
for all s > 0. For u,v € H*(R"), define the scalar product?

(), = (20 [ (14 [6P) F)F() de.

(a) Prove H°(R") = L*(R"™). Prove that H* is a Hilbert space.
Hint: For the second statement use completeness of L2((1 + [£]*)® d¢) c L2(d€).
(b) Prove that W*2(R") = H*(R") for k € N.

Hint: Start with £ = 1 to test the ground. Prove the equivalence of the norms on

S(R™).
(c) Prove that for 2s > n, H*(R™) imbeds continuously into C°(R").

Hint: Use the Fourier inverse formula.

'Recall the Fourier transform and its properties from exercises 8.4 and 8.5.
2As always we use both the hat notation and F to denote the Fourier transform on L?(R").

20th May 2016 7/9



ETH Ziirich Functional Analysis Il D-MATH
F'S 2016 Exercise Sheet 13 - Solution Charel Antony

Solution:

(a) The first statement is exactly Plancherel’s identity which states

[ull p2gny = (2m) "2 1] 2 geny -

For the second statement, it is not out of this world to check that H*(R") is a linear
subspace and that (-, -), defines a scalar product using that F is a linear isomorphism.
To prove that H*(R™) is complete, we take a Cauchy sequence u; in H*(R™), then
F(u;) is a Cauchy sequence in L2((1 + |£[*)* d¢) where (1 + |£]%)* d€ is the absolute
continuous measure with respect to the Lebesgue measure on R™ with Radon—-Nikodym
derivative (1 + |¢|*)*. This space is complete, so there is v € L2((1 + [€[*)*R") such
that Fu; converges to v in L2((1+ |€]*)* d€). As L2((1+|¢[%)* d¢) € L2(d€), there is
u € L*(R") such that Fu = v. Now it follows directly that u; — u in H*(R™). So
H?*(R™) is indeed a Hilbert space.

(b) Fix s =k € N. Then for u € S(R™), we have

2 o, 12 —n a, V)12
ulliro@n = 22 10%ullpa@ey = 2m) ™" 20 IF (0wl 2 en)

o<k la| <k

=@ Y [l . = @0 [ (3 (6P ae” d

lal<k lal <k

Now for £ € R”, we have

U+MW=O+$+@+~+@“=Z<(R+1QKW

aizk \(E — o], o

where we used the multinomial formula for x = (1,£3,...,&%) € R*". As each
coefficient is at least 1, we get directly

Mol < 1+ <Y g

|la|<k laf<k

for some C' := C(k,m) > 0 for all £ € R". Thus, we get

2 2 2
lullire@ny < Nullzr@ny < C llullpremn

We already have that S(R") is dense in W*2?(R"). Let us show that S(R") is also
dense in H*(R"). Let u € H*(R") and approximate (1 + |£|*)¥? € L*(R™) by
u; € S(R™) in L?, then taking v; :== F ! (OHELW) € S(R™). Then v; converges to u
in H*(R").
So the completions of S(R™) agrees with respect to both norms, so H¥(R") =
Wk;,Q (Rn)
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(c) We want to show that u € H*(R") admits a continuous representative. So fix
u € H*(R™) and approximate by Schwartz functions u; € S(R™) which is possible
by the same argument as above. Then we want to prove that wu; is also a Cauchy
sequence with respect to the sup-norm. By Fourier inverse formula, we have

n

uil@) = wi(e) = @m) " [ e (a(6) — a€)) A

Therefore, we get

[ui(2) — ;@) < 2m) ™" [ J,(8) — au(€)] de

—n 2\8/2 |5 i 1
=) [ IR 16 = 8O s
1

< s =l f, o9 < s = wl,

where we used Holder with p = ¢ = 2 in the penultimate inequality and for the last
inequality, we use (1+|1€‘2)5 < (1+|1§|23) € L'(R™) due to 2s > n. Thus v; is Cauchy in
sup-norm on R" as C is independent of z. Therefore, there is @ € C°(R") such that
u; — @ in sup-norm. By the same argument, we get that u; also point-wise converges
almost everywhere to u. So u = @ almost everywhere (the Fourier inverse formula is
only true almost everywhere for L? functions.). Furthermore for two u,v € H*(R"),
we get supgn (@ — ) < C'||lu — v||,. Therefore, we see that H*(R") — C°(R™) : u — @
is bounded and injective.

dg
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