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14.1. Lq − Lp spaces. Let 1 < p, q <∞.

(a) Define

Aq,p := {u : R×Rn → R : u is measurable,
(∫

R

(∫
Rn
|u(t, x)|p dx

) q
p

dt
) 1

q

<∞}/∼.

where ∼ is equivalence almost everywhere. Prove that Aq,p ∼= Lq(R, Lp(Rn)).

Hint: Use strong measurability to get a sequence of step functions ui ∈ Lq(R, Lp(Rn))
and establish the correspondance. Use vk = ∑k

i=0 |ui+1 − ui| with

‖ui+1 − ui‖Lq(R,Lp(Rn)) ≤
1
2i

and the norm on L1([−T, T ], L1(K)) for T > 0 and K ⊂ Rn compact to prove that
the limiting function is measurable.

(b) Prove that C∞0 (R× Rn) ⊂ Lq(R, Lp(Rn)) is dense.

Hint: Reduce it to step functions and then smoothen every single value, and then
smoothen in the t-variable.

(c) Prove that for βδ(t, x) = ρδ(t)
∏n
i=1 ρδ(x). Prove that βδ ∗u→ u in Lq(R, Lp(Rn)).

Hint: Banach-Steinhaus (2.1.5).

(d) Prove that C∞0 (R× Rn) is dense in W 1,q(R, Lp(Rn)) ∩ Lq(R,W 2,p(Rn)).

14.2. Hardy’s inequality 1 Fix 1 < p <∞ and a > 0.

(a) Let f : (0,∞) → R be a Lebesgue measurable and suppose that the function
(0,∞)→ R : x→ xp−1−a |f(x)|p is integrable. Show that the restriction of f to each
interval (0, x] is integrable and prove Hardy’s inequality

(∫ ∞
0

x−1−a
∣∣∣∣∫ x

0
f(t)dt

∣∣∣∣p dx
) 1

p

≤ p

a

(∫ ∞
0

xp−1−a |f(x)|p dx
) 1

p

.

Show that equality in Hardy’s inequality holds if and only if f = 0 almost everywhere.

Hint: Assume first that f is nonnegative with compact support and define

F (x) := 1
x

∫ x

0
f(t) dt for x > 0.

1This is part of exercise 4.52 p:171 in Dietmar’s Measure and Integration book.
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Use integration by parts to obtain∫ ∞
0

xp−1−aF (x)p dx = p

a

∫ ∞
0

xp−1−aF (x)p−1f(x) dx.

Use integration by part.

(b) Show that the constant p
a
in Hardy’s inequality is sharp.

Hint: Choose λ < 1− a
p
and take f(x) = x−λ for x ≤ 1 and f(x) := 0 for x > 1.

(c) Let f : (0,∞) → R be Lebesgue measurable and |f |p be Lebesgue integrable.
Prove that∫ ∞

0

∣∣∣∣1x
∫ x

0
f(t) dt

∣∣∣∣p dx ≤
(

p

p− 1

)p ∫ ∞
0
|f(x)|p dx.

(d) Same assumptions on f as in (a). Show that the restriction to each interval
[x,∞) is integrable and prove the inequality(∫ ∞

0
xa−1

∣∣∣∣∫ ∞
x

f(t)dt
∣∣∣∣p dx

) 1
p

≤ p

a

(∫ ∞
0

xp−1−a |f(x)|p dx
) 1

p

.

Hint: Apply the inequality in (a) to the function g(x) := x−2f(x−1).

14.3. Uniform maximal regularity of S and its dual.

Prove that for 1 < q, q∗ <∞ and X a reflexive complex Banach space with 1
q

+ 1
q∗ = 1,

the following are equivalent.

• S is uniformly maximal q-regular.

• S∗ is uniformly maximal q∗-regular.

where S∗ is the dual strongly continuous semigroup (7.3.9).

Hint: Prove by passing to the limit that for g : [0, T ]→ X∗, f : [0, T ]→ X C1, we
have∫ T

0

〈
g(t), A

∫ t

0
S(t− s)f(s) ds

〉
dt =

∫ T

0

〈
A∗
∫ s

0
S∗(s− t)g(T − t) dt, f(T − s)

〉
ds

where 〈·, ·〉 is the usual pairing between X and its dual.

14.4. Sobolev–Slobodeckij space Let n ∈ N and fix real numbers p ≥ 1 and
0 < s < 1. The completion of C∞0 (Rn,C) with respect to the norm

‖f‖ws,p :=
(∫

Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+sp dy dx
)1/p
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is called the homogeneous Sobolev–Slobodeckij space and is denoted by ws,p(Rn,C).
On the other hand, the completion of C∞0 (Rn,C) with respect to the norm

‖f‖bs,p
p,1,int

:=
(∫ ∞

0

1
rsp+1

1
µ(Br)

∫
Br

∫
Rn
|f(x+ h)− f(x)|p dx dh dr

)1/p

is called the homogeneous Besov space and denoted by bs,pp (Rn,C).

Prove that ws,p(Rn,C) = bs,pp (Rn,C).

Hint: Prove that ‖f‖bs,p
p,1,int

=
(

1
(n+sp)µ(B1)

)1/p
‖f‖ws,p by using Fubini and spherical

coordiantes.

14.5. Besov for 1 ≤ s < 2. Fix p, q ≥ 1. Prove that for f ∈ C∞0 (Rn) non constant
and 1 ≤ s < 2, that

‖f‖bs,p
q,1

=
(∫ ∞

0

(
ω1(r, f)p

rs

)q
dr

r

)1/q

=∞.

where ω1(r, f)p := sup|h|≤r (
∫
Rn |f(x+ h)− f(x)|p dx)1/p.

So one has to replace ω1(r, f)p with ω2(r, p)p in the case s ≥ 1.

Hint: Use (12.13) in Lemma 12.9.

Please hand in your solutions for this sheet by Thursday 02/06/2016 into
your assistant’s pigeonhole. Your teaching assistants will put your cor-
rected sheets in their pigeonholes in F28 in due time.

Dietmar and the team wish you pleasant holidays, so you can return with a fresh
mind to study for the exams.
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