6.1. Let $\Omega \subset \mathbb{R}^n$ be open and $u : \Omega \to \mathbb{R}$.

Prove that the following are equivalent:

- (i) $u \in W_{loc}^{1,\infty}(\Omega)$.
- (ii) u is locally Lipschitz.

Hint: For (i) implies (ii) use mollifiers $\rho_{\delta}(x) := \frac{1}{\delta^n} \rho(x/\delta)$ with supp $\rho \subset B_1(0)$ and estimate the Lipschitz constant for $u_{\delta} = u * \rho_{\delta}$ as $\delta \to 0$. For (ii) implies (i), consider a fixed vector $\xi \in \mathbb{R}^n$ and define the difference quotient

$$u_j(x) := j \left[u(x + \frac{\xi}{j}) - u(x) \right].$$

Prove that there is $u^{\xi} \in L^{\infty}_{loc}$, such that a subsequence of u_j weakly converges to u^{ξ} in L^2_{loc} . Show that

$$\int_{\Omega} u^{\xi} \varphi = -\int_{\Omega} u \partial_{\xi} \varphi$$

for any $\varphi \in C_0^{\infty}(\Omega)$ by proving a similar equality for u_i and taking the limit.

6.2. Let $\Omega \subset \mathbb{R}^2$ be defined by

$$\begin{split} &\Omega := \Omega_0 \cup \bigcup_{m=0}^{\infty} \Omega_m \\ &\Omega_0 := \{(x,y) \in \mathbb{R}^2 : 0 < x < 1, 0 < y < \frac{1}{2}\} \\ &\Omega_m := \{(x,y) \in \mathbb{R}^2 : \frac{1}{2^{2m+1}} < x < \frac{1}{2^{2m}}, \frac{1}{2} \le y < 1\} \end{split}$$

- (a) Show that the embedding $W^{1,2}(\Omega) \to L^2(\Omega)$ is not compact.
- (b) Show that $W^{1,2}(\Omega)$ is not a subset of $L^q(\Omega)$ for q > 2.
- **6.3.** Show that $C^{\infty}(\overline{\Omega})$ is not dense in $W^{1,p}(\Omega)$ for $p \geq 1$ where:
- (a) $\Omega = (-1,0) \cup (0,1)$.
- **(b)** $\Omega := \{(x,y) \in \mathbb{R}^2 : |(x,y)| < 1\} \setminus \{(x,0) \in \mathbb{R}^2 : 0 \le x < 1\}.$

Hint: For (b), prove that for $0 < \epsilon \le 1$ and for any smooth function $\varphi : [-\epsilon, \epsilon] \to \mathbb{R}$, one has

$$\int_{-\epsilon}^{0} |\varphi(t)| dt + \int_{0}^{\epsilon} |1 - \varphi(t)| dt + \int_{-\epsilon}^{\epsilon} |\varphi'(t)| dt \ge \epsilon.$$

Then consider a function $u \in W^{1,p}(\Omega)$ which cannot be extended to a continuous function on $B_1(0)$ and find a contradiction once you try to approximate it by smooth functions.

- **6.4.** Let $\Omega \subset \mathbb{R}^n$ be open. Let $u_n \in W^{k,p}(\Omega)$ be a Cauchy sequence with $u_n \to u$ in $L^p(\Omega)$. Prove that $u \in W^{k,p}(\Omega)$ and that $u_n \to u$ in $W^{k,p}(\Omega)$.
- **6.5.** Let $\Omega = \mathbb{R}^n$, $p \geq 2$ and $u : \mathbb{R}^n \to \mathbb{R}$ in $W^{2,p}(\Omega)$.
- (a) For n = 1, prove that

$$\int_{\mathbb{R}} |u'|^p \le C(p) \int_{\mathbb{R}} |uu''|^{\frac{p}{2}}$$

(b) Prove that

$$||u||_{W^{1,p}(\Omega)} \le C(n,p) ||u||_{L^p(\Omega)}^{1/2} ||u||_{W^{2,p}(\Omega)}^{1/2}$$

(c) Prove that

$$||u||_{W^{1,p}(\Omega)} \le C(n,p) ||u||_{L^{\infty}(\Omega)}^{1/2} ||u||_{W^{2,\frac{p}{2}}(\Omega)}^{1/2}$$

Hint: For (a) start with a compactly supported smooth function u and consider $v := u' |u'|^{p-2}$. Then use the integration by part formula for w = uv and the generalised Hölder inequality.

This sheet will be discussed after the Easter break. Please hand in your solutions for this sheet by Monday 11/04/2016.