6.1. Let $\Omega \subset \mathbb{R}^{n}$ be open and $u: \Omega \rightarrow \mathbb{R}$.

Prove that the following are equivalent:
(i) $u \in W_{l o c}^{1, \infty}(\Omega)$.
(ii) u is locally Lipschitz.

Hint: For (i) implies (ii) use mollifiers $\rho_{\delta}(x):=\frac{1}{\delta^{n}} \rho(x / \delta)$ with $\operatorname{supp} \rho \subset B_{1}(0)$ and estimate the Lipschitz constant for $u_{\delta}=u * \rho_{\delta}$ as $\delta \rightarrow 0$. For (ii) implies (i), consider a fixed vector $\xi \in \mathbb{R}^{n}$ and define the difference quotient

$$
u_{j}(x):=j\left[u\left(x+\frac{\xi}{j}\right)-u(x)\right] .
$$

Prove that there is $u^{\xi} \in L_{l o c}^{\infty}$, such that a subsequence of u_{j} weakly converges to u^{ξ} in $L_{\text {loc }}^{2}$. Show that

$$
\int_{\Omega} u^{\xi} \varphi=-\int_{\Omega} u \partial_{\xi} \varphi
$$

for any $\varphi \in C_{0}^{\infty}(\Omega)$ by proving a similar equality for u_{j} and taking the limit.
Solution: (i) \Rightarrow (ii): Let $u \in W_{\text {loc }}^{1, \infty}(\Omega)$. Then $u_{\delta}=\rho_{\delta} * u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)^{1}$ converges to u almost everywhere on Ω. Also

$$
\left|\nabla u_{\delta}(x)\right| \leq\|\nabla u\|_{L^{\infty}\left(B_{\delta}(x)\right)} \int_{\mathbb{R}^{n}} \rho_{\delta}(y) \mathrm{d} y=\|\nabla u\|_{L^{\infty}\left(B_{\delta}(x)\right)}
$$

for $\delta>0$ with $B_{\delta}(x) \subset \Omega$. Hence for $x \in \Omega$ where $u_{\delta}(x)$ converges to $u(x)$, let $\delta_{0}>0$ such that $\overline{B_{\delta_{0}}(x)} \subset \Omega$. Then for $x+\xi \in B_{\delta_{0}}(x)$ such that $u_{\delta}(x+\xi)$ converges to $u(x+\xi)$, we get

$$
\begin{aligned}
|u(x)-u(x+\xi)| & =\lim _{\delta \rightarrow 0}\left|u_{\delta}(x)-u_{\delta}(x+\xi)\right|=\lim _{\delta \rightarrow 0}\left|\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} s} u_{\delta}(x+s \xi) \mathrm{d} s\right| \\
& =\lim _{\delta \rightarrow 0}\left|\int_{0}^{1} \nabla u(x+s \xi) \cdot \xi \mathrm{d} s\right| \leq \lim _{\delta \rightarrow 0}|\xi| \int_{0}^{1}|\nabla u(x+s \xi)| \mathrm{d} s \\
& \leq \lim _{\delta \rightarrow 0}\left\|\nabla u_{\delta}\right\|_{L^{\infty}\left(B_{\delta}(x)\right)}|\xi| \leq\|\nabla u\|_{L^{\infty}\left(B_{\delta_{0}}(x)\right)}|\xi|
\end{aligned}
$$

and so $C_{x}:=\|\nabla u\|_{L^{\infty}\left(\overline{\left.B_{\delta_{0}}(x)\right)}\right.}<\infty$. As C_{x} is independent of ξ, we can change u on a set of measure zero on K and we get that $\left.u\right|_{B_{\delta_{0}(x)}}$ is Lipschitz continuous on $B_{\delta_{0}}(x)$ with constant C_{x}.

[^0]So far, we know how to make u Lipschitz in a neighbourhood of almost every point. Now we need to convince ourselves that we can make changes to u on a set of measure zero such that u is locally Lipschitz everywhere. For this use σ compactness of Ω. Indeed, fix a nested sequence of compact sets $\Omega_{n} \subset \Omega_{n+1}$ that exhausts ${ }^{2} \Omega$ and now for every $n \in \mathbb{N}$, we change u on a set of measure zero on Ω_{n}. We note that if $\left.u\right|_{\Omega_{n}}$ is locally Lipschitz, we don't have to change u on Ω_{n} to make it locally Lipschitz in Ω_{n+1}. Now for the Lebesgue measure, full measure sets are also dense, hence for this dense set $\left\{x_{\nu} \in \Omega_{n}\right\}, B_{\delta_{0}\left(x_{\nu}\right)}\left(x_{\nu}\right)$ covers Ω_{n}. Thus finitely many cover, and for these finitely many balls, change u on a set of measure zero as before, to make $\left.u\right|_{\Omega_{n}}$ locally Lipschitz. This proves that we can change u on a set of measure zero, to make it locally Lipschitz on Ω as the countable union of measure zero sets is of measure zero.
(ii) \Rightarrow (i): Define u_{j} as in the hint where we extend u outside of Ω. Let $\Omega_{n} \subset \Omega_{n+1}$ an exhausting, increasing sequence of bounded open sets. Then the Ω_{n} can be chosen such that for $n \in \mathbb{N}$, there is $j \in \mathbb{N}$ such that $x+\xi / j \in \Omega_{n+1}$ for every $x \in \Omega_{n}$. Then there is a Lipschitz constant C_{n} for $\bar{\Omega}_{n+1}$ by finite covering property and so we have

$$
\left|u_{j}(x)\right| \leq j C_{n} \frac{|\xi|}{j}=C_{n}|\xi|
$$

for all $x \in \Omega_{n}$. So therefore, $\left\|u_{j}\right\|_{L^{2}\left(\Omega_{n}\right)} \leq C_{n}|\xi| \operatorname{vol}\left(\Omega_{n}\right)^{1 / 2}$. As $L^{2}\left(\Omega_{n}\right)$ is reflexive and separable, we have by Banach-Alaoglu theorem from FAI a weakly convergent subsequence $u_{j_{k}} \rightharpoonup u_{n}^{\xi} \in L^{2}\left(\Omega_{n}\right)$. Making this construction inductively with the previous subsequence, we get by uniqueness of weak limits, that $\left.u_{n}^{\xi}\right|_{\Omega_{n}}=\left.u_{n+1}^{\xi}\right|_{\Omega_{n}}$. Thus we can define the function $u^{\xi}: \Omega \rightarrow \mathbb{R}$ by $\left.u^{\xi}\right|_{\Omega_{n}}:=u_{n}^{\xi}$. As Ω_{n} is exhausting, the diagonal subsequence will weakly converge to u^{ξ} in $L_{l o c}^{2}(\Omega)$.

Now to prove that $u^{\xi} \in L_{l o c}^{\infty}(\Omega)$. This comes from the fact that every u_{j} defines a linear functional on $L_{l o c}^{1}$, whose dual is $L_{l o c}^{\infty}$ and the Banach-Steinhaus theorem from FAI. Namely, we have that for Ω_{n} as before, that for $v \in L^{1}\left(\Omega_{n}\right)$ that

$$
\left|\int_{\Omega_{n}} u_{j} v\right| \leq C_{n}\|v\|_{L^{1}\left(\Omega_{n}\right)}
$$

where C_{n} is a Lipschitz constant for $\overline{\Omega_{n+1}}$ and we have that $L_{j} v:=\int_{\Omega_{n}} u_{j} \varphi$ is Cauchy on the dense subset $L^{2}\left(\Omega_{n}\right) \subset L^{1}\left(\Omega_{n}\right)^{3}$. Hence by Banach-Steinhaus, there is an operator $L \in L^{1}\left(\Omega_{n}\right)^{*}$ such that L_{j} strongly converges to L. This means in particular, that there is a function $w \in L^{\infty}\left(\Omega_{n}\right)$ such that $L v=\int_{\Omega_{n}} w v$ for all $v \in L^{1}\left(\Omega_{n}\right)$. Due to strong convergence, we also have for every $v \in L^{2}\left(\Omega_{n}\right)$ that $L v=\int_{\Omega_{n}} u^{\xi} v$. Hence,

[^1]w is also a weak limit of u_{j} on $L^{2}\left(\Omega_{n}\right)$. By uniqueness of weak limits, we have $u^{\xi}=w$ and so $u^{\xi} \in L^{\infty}\left(\Omega_{n}\right)$.

Let us prove that u^{ξ} is the weak derivative of u in the direction of ξ, namely for u_{j} we have the following for every $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$:

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} j\left[u\left(x+\frac{\xi}{j}\right)-u(x)\right] \varphi(x) & =\int_{\mathbb{R}^{n}} j u\left(x+\frac{\xi}{j}\right) \varphi(x)-\int_{\mathbb{R}^{n}} j u(x) \varphi(x) \\
& =\int_{\mathbb{R}^{n}} j u(x) \varphi\left(x-\frac{\xi}{j}\right)-\int_{\mathbb{R}^{n}} j u(x) \varphi(x) \\
& =\int_{\mathbb{R}^{n}} u(x)\left[j\left(\varphi\left(x-\frac{\xi}{j}\right)-\varphi(x)\right]\right.
\end{aligned}
$$

where we used invariance under translation of the Lebesgue measure in the second line. Therefore, as we take $j \rightarrow \infty$, by definition of u^{ξ}, we get

$$
\int_{\mathbb{R}^{n}} u^{\xi} \varphi=-\int_{\mathbb{R}^{n}} u \partial_{\xi} \varphi
$$

6.2. Let $\Omega \subset \mathbb{R}^{2}$ be defined by

$$
\begin{aligned}
& \Omega:=\Omega_{0} \cup \bigcup_{m=0}^{\infty} \Omega_{m} \\
& \Omega_{0}:=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1,0<y<\frac{1}{2}\right\} \\
& \Omega_{m}:=\left\{(x, y) \in \mathbb{R}^{2}: \frac{1}{2^{2 m+1}}<x<\frac{1}{2^{2 m}}, \frac{1}{2} \leq y<1\right\}
\end{aligned}
$$

(a) Show that the embedding $W^{1,2}(\Omega) \rightarrow L^{2}(\Omega)$ is not compact.
(b) Show that $W^{1,2}(\Omega)$ is not a subset of $L^{q}(\Omega)$ for $q>2$.

Solution:

(a) Consider the function u_{m} supported in Ω_{m} given by

$$
u_{m}(x, y)= \begin{cases}2^{m} & \text { for }(x, y) \in \Omega_{m}, \frac{3}{4}<y<1 \\ 4\left(y-\frac{1}{2}\right) 2^{m} & \text { for }(x, y) \in \Omega_{m}, \frac{1}{2}<y<\frac{3}{4} \\ 0 & \text { else }\end{cases}
$$

Then a short calculation shows that

$$
\frac{1}{4} \leq \int_{\Omega}\left|u_{m}\right|^{2} \mathrm{~d} x \leq \frac{1}{2}, \quad \int_{\Omega}\left|\nabla u_{m}\right|^{2} \leq 4
$$

and so $\left\{u_{m}\right\}$ is bounded in $W^{1,2}(\Omega)$. Assume now that a subsequence u_{m} would converge to $u \in L^{2}(\Omega)$. Then since u_{m} converges point wise almost everywhere to zero, we see by dominated convergence (Ω is bounded) that $u \equiv 0$. But this gives us a contradiction to $\frac{1}{4} \leq \int_{\Omega}\left|u_{m}\right|^{2} \mathrm{~d} x$.
(b) Let us define the function u_{m} as

$$
u_{m}(x, y)= \begin{cases}\frac{2^{m}}{m} & \text { for }(x, y) \in \Omega_{m}, \frac{3}{4}<y<1 \\ \frac{4}{m}\left(y-\frac{1}{2}\right) 2^{m} & \text { for }(x, y) \in \Omega_{m}, \frac{1}{2}<y<\frac{3}{4} \\ 0 & \text { else }\end{cases}
$$

and $u=\sum_{m=1}^{\infty} u_{m}$. Then a similar calculation as in (a) shows that

$$
\int_{\Omega}\left|u_{m}\right|^{2} \mathrm{~d} x \leq \frac{1}{2 m^{2}}, \quad \int_{\Omega}\left|\nabla u_{m}\right|^{2} \leq \frac{4}{m^{2}} \quad \int_{\Omega}\left|u_{m}\right|^{q} \mathrm{~d} x \geq \frac{2^{(q-2) m}}{4 m^{q}}
$$

for all $q>2$. Therfore,

$$
\|u\|_{W^{1,2}(\Omega)}^{2} \leq \sum_{m=1}^{\infty}\left(\frac{1}{2}+4\right) \frac{1}{m^{2}}<\infty
$$

whereas

$$
\|u\|_{L^{q}(\Omega)}^{q} \geq \frac{1}{4} \sum_{m=1}^{\infty} \frac{2^{(q-2) m}}{m^{q}}=\infty .
$$

Hence $u \in W^{1,2}(\Omega) \backslash L^{q}(\Omega)$.
6.3. Show that $C^{\infty}(\bar{\Omega})$ is not dense in $W^{1, p}(\Omega)$ for $p \geq 1$ where:
(a) $\Omega=(-1,0) \cup(0,1)$.
(b) $\Omega:=\left\{(x, y) \in \mathbb{R}^{2}:|(x, y)|<1\right\} \backslash\left\{(x, 0) \in \mathbb{R}^{2}: 0 \leq x<1\right\}$.

Hint: For (b), prove that for $0<\epsilon \leq 1$ and for any smooth function $\varphi:[-\epsilon, \epsilon] \rightarrow \mathbb{R}$, one has

$$
\int_{-\epsilon}^{0}|\varphi(t)| \mathrm{d} t+\int_{0}^{\epsilon}|1-\varphi(t)| \mathrm{d} t+\int_{-\epsilon}^{\epsilon}\left|\varphi^{\prime}(t)\right| \mathrm{d} t \geq \epsilon
$$

Then consider a function $u \in W^{1, p}(\Omega)$ which cannot be extended to a continuous function on $B_{1}(0)$ and find a contradiction once you try to approximate it by smooth functions.

Solution:

(a) Let $p \geq 1$. Consider the function $u:=\mathbb{1}_{(0,1)} \in L^{p}(\Omega)$, and assume that there is a sequence $u_{m} \in C^{\infty}\left((\bar{\Omega})=C^{\infty}((-1,1))\right.$ converging to u in $W^{1, p}(\Omega)$. Then $u \in W^{1, p}((-1,1))$, but this is a contradiction to the fact that every element of $W^{1, p}((-1,1))$ has a continuous representative.
(b) To prove the suggested inequality in the hint, set $s:=\sup _{(0, \epsilon)} \varphi$ and $r=\inf _{(-\epsilon, 0)} \varphi$. We always have $r \leq s$. Let us only treat the case where $0 \leq r \leq s \leq 1$, for the other cases are similar. Then we get the following estimates

$$
\int_{-\epsilon}^{0}|\varphi| \mathrm{d} t \geq r \epsilon, \quad \int_{0}^{\epsilon}|\varphi| \mathrm{d} t \geq(1-s) \epsilon, \quad \text { and } \quad \int_{-\epsilon}^{\epsilon}|\dot{\varphi}| \mathrm{d} t \geq s-r .
$$

As $\epsilon \leq 1$, we conclude as $(s-r)(1-\epsilon)+\epsilon \geq \epsilon$. This inequality basically tells us that a smooth function cannot jump from 0 to 1 without recking up some derivative.
Let $p \geq 1$. Now consider the cube Q centred at $x=\left(\frac{1}{2}, 0\right)$ of side length $2 \epsilon<\frac{1}{4}$. Then $Q \cap \Omega$ has two connected components Q_{+}and Q_{-}. Fix u to be 1 on Q_{+}and 0 on Q_{-}. Then u can be extended to a function (even smooth by cutting off) on Ω of class $W^{1, p}(\Omega)$. Now assume there is a sequence of functions $\varphi_{n} \in C^{\infty}(\bar{\Omega})$ converging to u in $W^{1, p}(\Omega)$. Then we apply the above inequality to every function $\varphi_{n, x}(t):=\varphi_{n}(x, t)$ for $x \in(-\epsilon, \epsilon)$ and $n \in \mathbb{N}$, to get by Fubini

$$
\int_{Q}\left|u-\varphi_{n}\right|+\int_{Q}\left|\nabla u-\nabla u_{n}\right| \geq 2 \epsilon^{2}
$$

This means that $\left\|u-\varphi_{n}\right\|_{W^{1,1}(\Omega)} \geq 2 \epsilon^{2}$ for all $n \in \mathbb{N}$. Therefore, as Ω is bounded, there is a constant $C(p)>0$ by Hölder, such that

$$
C(p)\left\|u-\varphi_{n}\right\|_{W^{1, p}(\Omega)} \geq\left\|u-\varphi_{n}\right\|_{W^{1,1}(\Omega)} \geq 2 \epsilon^{2}
$$

This is a contradiction to φ_{n} converging to u in $W^{1, p}(\Omega)$.
6.4. Let $\Omega \subset \mathbb{R}^{n}$ be open. Let $u_{n} \in W^{k, p}(\Omega)$ be a Cauchy sequence with $u_{n} \rightarrow u$ in $L^{p}(\Omega)$. Prove that $u \in W^{k, p}(\Omega)$ and that $u_{n} \rightarrow u$ in $W^{k, p}(\Omega)$.

Solution: As $W^{1, p}(\Omega)$ is a Banach space, we have that $u_{n} \rightarrow v$ in $W^{k, p}(\Omega)$ where $v \in W^{k, p}(\Omega)$. As $\|w\|_{L^{p}(\Omega)} \leq\|w\|_{W^{k, p}(\Omega)}$ for all $w \in W^{k, p}(\Omega), u_{n} \rightarrow v$ in $L^{p}(\Omega)$ as well. So by uniqueness of limits, $u=v$.
6.5. Let $\Omega=\mathbb{R}^{n}, p \geq 2$ and $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in $W^{2, p}(\Omega)$.
(a) For $n=1$, prove that

$$
\int_{\mathbb{R}}\left|u^{\prime}\right|^{p} \leq C(p) \int_{\mathbb{R}}\left|u u^{\prime \prime}\right|^{\frac{p}{2}}
$$

(b) Prove that

$$
\|u\|_{W^{1, p}(\Omega)} \leq C(n, p)\|u\|_{L^{p}(\Omega)}^{1 / 2}\|u\|_{W^{2, p}(\Omega)}^{1 / 2}
$$

(c) Prove that

$$
\|u\|_{W^{1, p}(\Omega)} \leq C(n, p)\|u\|_{L^{\infty}(\Omega)}^{1 / 2}\|u\|_{W^{2, \frac{p}{2}}(\Omega)}^{1 / 2}
$$

Hint: For (a) start with a compactly supported smooth function u and consider $v:=u^{\prime}\left|u^{\prime}\right|^{p-2}$. Then use the integration by part formula for $w=u v$ and the generalised Hölder inequality.

Solution:

(a) It is by density enough to prove the inequality for $u \in C_{0}^{\infty}(\mathbb{R})$. Take $v=u^{\prime}\left|u^{\prime}\right|^{p-2}$, then this is a function in $C_{c}^{1}(\mathbb{R})$ and its derivative is $v^{\prime}=(p-1)\left|u^{\prime}\right|^{p-2} u^{\prime \prime}$. Then for $w=u v$, we have $w^{\prime}=\left|u^{\prime}\right|^{p}+(p-1) u u^{\prime \prime}\left|u^{\prime}\right|^{p-2}$. Hence, by integration by part, we have due to compact support

$$
\int_{\mathbb{R}}\left|u^{\prime}\right|^{p}=(p-1) \int_{\mathbb{R}} u u^{\prime \prime}\left|u^{\prime}\right|^{p-2} \leq(p-1)\left(\int_{\mathbb{R}}\left|u^{\prime \prime} u\right|^{\frac{p}{2}}\right)^{\frac{2}{p}}\left(\int_{\mathbb{R}}\left|u^{\prime}\right|^{(p-2) \frac{p}{p-2}}\right)^{\frac{p-2}{p}}
$$

where we used Hölder with exponents $\frac{p}{2}$ and $\frac{p}{p-2}$. Hence by dividing by $\left(\int_{\mathbb{R}}\left|u^{\prime}\right|^{(p-2) \frac{p}{p-2}}\right)^{\frac{p-2}{p}}$, we get

$$
\left(\int_{\mathbb{R}}\left|u^{\prime}\right|^{p}\right)^{\frac{2}{p}} \leq(p-1)\left(\int_{\mathbb{R}}\left|u^{\prime \prime} u\right|^{\frac{p}{2}}\right)^{\frac{2}{p}} \Leftrightarrow \int_{\mathbb{R}}\left|u^{\prime}\right|^{p} \leq(p-1)^{\frac{p}{2}} \int_{\mathbb{R}}\left|u u^{\prime \prime}\right|^{\frac{p}{2}}
$$

(b) Again fix $u \in C_{0}^{\infty}(\Omega)$. We have

$$
\|u\|_{L^{p}(\Omega)}=\|u\|_{L^{p}(\Omega)}^{\frac{1}{2}}\|u\|_{L^{p}(\Omega)}^{\frac{1}{2}} \leq\|u\|_{L^{p}(\Omega)}^{1 / 2}\|u\|_{W^{2, p}(\Omega)}^{1 / 2}
$$

By (a) for $i=1, \ldots, n$, we have for $x \in \Omega$ with $x_{i}=0$, that

$$
\int_{\mathbb{R}}\left|\partial_{i} u\left(x+t e_{i}\right)\right|^{p} \mathrm{~d} t \leq C(p) \int_{\mathbb{R}}\left|u\left(x+t e_{i}\right) \partial_{i}^{2} u\left(x+t e_{i}\right)\right|^{\frac{p}{2}} \mathrm{~d} t
$$

Now integrating over all the other components, we get

$$
\int_{\Omega}\left|\partial_{i} u\right|^{p} \leq C(p) \int_{\Omega}\left|u \partial_{i}^{2} u\right|^{\frac{p}{2}} \leq C(p)\left(\int_{\Omega}|u|^{p}\right)^{\frac{1}{2}}\left(\int_{\Omega}\left|\partial_{i}^{2} u\right|^{p}\right)^{\frac{1}{2}}
$$

where we used Hölder with exponents 2 and 2. And hence taking the $p^{\text {th }}$ root and summing up all the estimates, we get

$$
\|u\|_{W^{1, p}(\Omega)} \leq C(n, p)\|u\|_{L^{p}(\Omega)}^{1 / 2}\|u\|_{W^{2, p}(\Omega)}^{1 / 2}
$$

(c) As before in (b), we get

$$
\int_{\Omega}\left|\partial_{i} u\right|^{p} \leq C(p) \int_{\Omega}\left|u \partial_{i}^{2} u\right|^{\frac{p}{2}} \leq C(p)\|u\|_{L^{\infty}(\Omega)}^{\frac{p}{2}} \int_{\Omega}\left|\partial_{i}^{2} u\right|^{\frac{p}{2}}
$$

And hence taking the $p^{t h}$ root and summing up all the estimates, we get

$$
\|u\|_{W^{1, p}(\Omega)} \leq C(n, p)\|u\|_{L^{\infty}(\Omega)}^{1 / 2}\|u\|_{W^{2,2}(\Omega)}^{1 / 2}
$$

[^0]: ${ }^{1}$ As usual, you extend u outside of Ω in \mathbb{R}^{n} by definition of $W^{1, p}(\Omega)$ and then take this function for the convolution.

[^1]: ${ }^{2}$ This means that $\bigcup_{i=1}^{\infty} \Omega_{n}=\Omega$.
 ${ }^{3}$ Density follows from the fact that $L^{2}\left(\Omega_{n}\right)$ already contains all the $C^{0}\left(\Omega_{n}\right)$ which form a dense subset.

