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6.1. Let Ω ⊂ Rn be open and u : Ω→ R.

Prove that the following are equivalent:

(i) u ∈ W 1,∞
loc (Ω).

(ii) u is locally Lipschitz.

Hint: For (i) implies (ii) use mollifiers ρδ(x) := 1
δn
ρ(x/δ) with supp ρ ⊂ B1(0) and

estimate the Lipschitz constant for uδ = u ∗ ρδ as δ → 0. For (ii) implies (i), consider
a fixed vector ξ ∈ Rn and define the difference quotient

uj(x) := j

[
u(x+ ξ

j
)− u(x)

]
.

Prove that there is uξ ∈ L∞loc, such that a subsequence of uj weakly converges to uξ in
L2
loc. Show that∫

Ω
uξϕ = −

∫
Ω
u∂ξϕ

for any ϕ ∈ C∞0 (Ω) by proving a similar equality for uj and taking the limit.

Solution: (i) ⇒ (ii): Let u ∈ W 1,∞
loc (Ω). Then uδ = ρδ ∗ u ∈ C∞0 (Rn)1 converges to

u almost everywhere on Ω. Also

|∇uδ(x)| ≤ ‖∇u‖L∞(Bδ(x))

∫
Rn
ρδ(y) dy = ‖∇u‖L∞(Bδ(x))

for δ > 0 with Bδ(x) ⊂ Ω. Hence for x ∈ Ω where uδ(x) converges to u(x), let δ0 > 0
such that Bδ0(x) ⊂ Ω. Then for x + ξ ∈ Bδ0(x) such that uδ(x + ξ) converges to
u(x+ ξ), we get

|u(x)− u(x+ ξ)| = lim
δ→0
|uδ(x)− uδ(x+ ξ)| = lim

δ→0

∣∣∣∣∣
∫ 1

0

d
dsuδ(x+ sξ) ds

∣∣∣∣∣
= lim

δ→0

∣∣∣∣∫ 1

0
∇u(x+ sξ) · ξ ds

∣∣∣∣ ≤ lim
δ→0
|ξ|
∫ 1

0
|∇u(x+ sξ)| ds

≤ lim
δ→0
‖∇uδ‖L∞(Bδ(x)) |ξ| ≤ ‖∇u‖L∞(Bδ0 (x)) |ξ|

and so Cx := ‖∇u‖L∞(Bδ0 (x)) <∞. As Cx is independent of ξ, we can change u on a
set of measure zero on K and we get that u|Bδ0(x) is Lipschitz continuous on Bδ0(x)
with constant Cx.

1As usual, you extend u outside of Ω in Rn by definition of W 1,p(Ω) and then take this function
for the convolution.
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So far, we know how to make u Lipschitz in a neighbourhood of almost every point.
Now we need to convince ourselves that we can make changes to u on a set of measure
zero such that u is locally Lipschitz everywhere. For this use σ compactness of Ω.
Indeed, fix a nested sequence of compact sets Ωn ⊂ Ωn+1 that exhausts 2 Ω and now
for every n ∈ N, we change u on a set of measure zero on Ωn. We note that if u|Ωn
is locally Lipschitz, we don’t have to change u on Ωn to make it locally Lipschitz
in Ωn+1. Now for the Lebesgue measure, full measure sets are also dense, hence for
this dense set {xν ∈ Ωn}, Bδ0(xν)(xν) covers Ωn. Thus finitely many cover, and for
these finitely many balls, change u on a set of measure zero as before, to make u|Ωn
locally Lipschitz. This proves that we can change u on a set of measure zero, to make
it locally Lipschitz on Ω as the countable union of measure zero sets is of measure
zero.

(ii) ⇒ (i): Define uj as in the hint where we extend u outside of Ω. Let Ωn ⊂ Ωn+1
an exhausting, increasing sequence of bounded open sets. Then the Ωn can be chosen
such that for n ∈ N, there is j ∈ N such that x+ ξ/j ∈ Ωn+1 for every x ∈ Ωn. Then
there is a Lipschitz constant Cn for Ωn+1 by finite covering property and so we have

|uj(x)| ≤ jCn
|ξ|
j

= Cn |ξ|

for all x ∈ Ωn. So therefore, ‖uj‖L2(Ωn) ≤ Cn |ξ| vol(Ωn)1/2. As L2(Ωn) is reflexive
and separable, we have by Banach-Alaoglu theorem from FAI a weakly convergent
subsequence ujk ⇀ uξn ∈ L2(Ωn). Making this construction inductively with the
previous subsequence, we get by uniqueness of weak limits, that uξn|Ωn = uξn+1|Ωn .
Thus we can define the function uξ : Ω→ R by uξ|Ωn := uξn. As Ωn is exhausting, the
diagonal subsequence will weakly converge to uξ in L2

loc(Ω).

Now to prove that uξ ∈ L∞loc(Ω). This comes from the fact that every uj defines a
linear functional on L1

loc, whose dual is L∞loc and the Banach-Steinhaus theorem from
FAI. Namely, we have that for Ωn as before, that for v ∈ L1(Ωn) that∣∣∣∣∫

Ωn
ujv

∣∣∣∣ ≤ Cn ‖v‖L1(Ωn)

where Cn is a Lipschitz constant for Ωn+1 and we have that Ljv :=
∫

Ωn ujϕ is Cauchy
on the dense subset L2(Ωn) ⊂ L1(Ωn) 3. Hence by Banach-Steinhaus, there is an
operator L ∈ L1(Ωn)∗ such that Lj strongly converges to L. This means in particular,
that there is a function w ∈ L∞(Ωn) such that Lv =

∫
Ωn wv for all v ∈ L1(Ωn). Due

to strong convergence, we also have for every v ∈ L2(Ωn) that Lv =
∫

Ωn u
ξv. Hence,

2This means that
⋃∞

i=1 Ωn = Ω.
3Density follows from the fact that L2(Ωn) already contains all the C0(Ωn) which form a dense
subset.
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w is also a weak limit of uj on L2(Ωn). By uniqueness of weak limits, we have uξ = w
and so uξ ∈ L∞(Ωn).

Let us prove that uξ is the weak derivative of u in the direction of ξ, namely for uj
we have the following for every ϕ ∈ C∞0 (Rn):

∫
Rn
j[u

(
x+ ξ

j

)
− u(x)]ϕ(x) =

∫
Rn
ju

(
x+ ξ

j

)
ϕ(x)−

∫
Rn
ju(x)ϕ(x)

=
∫
Rn
ju(x)ϕ

(
x− ξ

j

)
−
∫
Rn
ju(x)ϕ(x)

=
∫
Rn
u(x)[j(ϕ

(
x− ξ

j

)
− ϕ(x)]

where we used invariance under translation of the Lebesgue measure in the second
line. Therefore, as we take j →∞, by definition of uξ, we get∫

Rn
uξϕ = −

∫
Rn
u∂ξϕ.

6.2. Let Ω ⊂ R2 be defined by

Ω := Ω0 ∪
∞⋃
m=0

Ωm

Ω0 := {(x, y) ∈ R2 : 0 < x < 1, 0 < y <
1
2}

Ωm := {(x, y) ∈ R2 : 1
22m+1 < x <

1
22m ,

1
2 ≤ y < 1}

(a) Show that the embedding W 1,2(Ω)→ L2(Ω) is not compact.

(b) Show that W 1,2(Ω) is not a subset of Lq(Ω) for q > 2.

Solution:

(a) Consider the function um supported in Ωm given by

um(x, y) =


2m for (x, y) ∈ Ωm,

3
4 < y < 1

4(y − 1
2)2m for (x, y) ∈ Ωm,

1
2 < y <

3
4

0 else
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Then a short calculation shows that
1
4 ≤

∫
Ω
|um|2 dx ≤ 1

2 ,
∫

Ω
|∇um|2 ≤ 4

and so {um} is bounded in W 1,2(Ω). Assume now that a subsequence um would
converge to u ∈ L2(Ω). Then since um converges point wise almost everywhere to
zero, we see by dominated convergence (Ω is bounded) that u ≡ 0. But this gives us
a contradiction to 1

4 ≤
∫
Ω |um|

2 dx.

(b) Let us define the function um as

um(x, y) =



2m
m

for (x, y) ∈ Ωm,
3
4 < y < 1

4
m

(y − 1
2)2m for (x, y) ∈ Ωm,

1
2 < y <

3
4

0 else

and u = ∑∞
m=1 um. Then a similar calculation as in (a) shows that

∫
Ω
|um|2 dx ≤ 1

2m2 ,
∫

Ω
|∇um|2 ≤

4
m2

∫
Ω
|um|q dx ≥ 2(q−2)m

4mq

for all q > 2. Therfore,

‖u‖2
W 1,2(Ω) ≤

∞∑
m=1

(1
2 + 4) 1

m2 <∞

whereas

‖u‖qLq(Ω) ≥
1
4

∞∑
m=1

2(q−2)m

mq
=∞.

Hence u ∈ W 1,2(Ω) \ Lq(Ω).

6.3. Show that C∞(Ω) is not dense in W 1,p(Ω) for p ≥ 1 where:

(a) Ω = (−1, 0) ∪ (0, 1).

(b) Ω := {(x, y) ∈ R2 : |(x, y)| < 1} \ {(x, 0) ∈ R2 : 0 ≤ x < 1}.

Hint: For (b), prove that for 0 < ε ≤ 1 and for any smooth function ϕ : [−ε, ε]→ R,
one has∫ 0

−ε
|ϕ(t)| dt+

∫ ε

0
|1− ϕ(t)| dt+

∫ ε

−ε
|ϕ′(t)| dt ≥ ε.
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Then consider a function u ∈ W 1,p(Ω) which cannot be extended to a continuous
function on B1(0) and find a contradiction once you try to approximate it by smooth
functions.

Solution:

(a) Let p ≥ 1. Consider the function u := 1(0,1) ∈ Lp(Ω), and assume that there
is a sequence um ∈ C∞((Ω) = C∞((−1, 1)) converging to u in W 1,p(Ω). Then
u ∈ W 1,p((−1, 1)), but this is a contradiction to the fact that every element of
W 1,p((−1, 1)) has a continuous representative.

(b) To prove the suggested inequality in the hint, set s := sup(0,ε) ϕ and r = inf(−ε,0) ϕ.
We always have r ≤ s. Let us only treat the case where 0 ≤ r ≤ s ≤ 1, for the other
cases are similar. Then we get the following estimates∫ 0

−ε
|ϕ| dt ≥ rε,

∫ ε

0
|ϕ| dt ≥ (1− s)ε, and

∫ ε

−ε
|ϕ̇| dt ≥ s− r.

As ε ≤ 1, we conclude as (s− r)(1− ε) + ε ≥ ε. This inequality basically tells us that
a smooth function cannot jump from 0 to 1 without recking up some derivative.

Let p ≥ 1. Now consider the cube Q centred at x = (1
2 , 0) of side length 2ε < 1

4 . Then
Q ∩ Ω has two connected components Q+ and Q−. Fix u to be 1 on Q+ and 0 on
Q−. Then u can be extended to a function (even smooth by cutting off) on Ω of class
W 1,p(Ω). Now assume there is a sequence of functions ϕn ∈ C∞(Ω) converging to u
in W 1,p(Ω). Then we apply the above inequality to every function ϕn,x(t) := ϕn(x, t)
for x ∈ (−ε, ε) and n ∈ N, to get by Fubini∫

Q
|u− ϕn|+

∫
Q
|∇u−∇un| ≥ 2ε2.

This means that ‖u− ϕn‖W 1,1(Ω) ≥ 2ε2 for all n ∈ N. Therefore, as Ω is bounded,
there is a constantC(p) > 0 by Hölder, such that

C(p) ‖u− ϕn‖W 1,p(Ω) ≥ ‖u− ϕn‖W 1,1(Ω) ≥ 2ε2.

This is a contradiction to ϕn converging to u in W 1,p(Ω).

6.4. Let Ω ⊂ Rn be open. Let un ∈ W k,p(Ω) be a Cauchy sequence with un → u
in Lp(Ω). Prove that u ∈ W k,p(Ω) and that un → u in W k,p(Ω).

Solution: As W 1,p(Ω) is a Banach space, we have that un → v in W k,p(Ω) where
v ∈ W k,p(Ω). As ‖w‖Lp(Ω) ≤ ‖w‖Wk,p(Ω) for all w ∈ W k,p(Ω), un → v in Lp(Ω) as
well. So by uniqueness of limits, u = v.

6.5. Let Ω = Rn, p ≥ 2 and u : Rn → R in W 2,p(Ω).
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(a) For n = 1, prove that∫
R
|u′|p ≤ C(p)

∫
R
|uu′′|

p
2

(b) Prove that

‖u‖W 1,p(Ω) ≤ C(n, p) ‖u‖1/2
Lp(Ω) ‖u‖

1/2
W 2,p(Ω)

(c) Prove that

‖u‖W 1,p(Ω) ≤ C(n, p) ‖u‖1/2
L∞(Ω) ‖u‖

1/2
W 2, p2 (Ω)

Hint: For (a) start with a compactly supported smooth function u and consider
v := u′ |u′|p−2. Then use the integration by part formula for w = uv and the
generalised Hölder inequality.

Solution:

(a) It is by density enough to prove the inequality for u ∈ C∞0 (R). Take v = u′ |u′|p−2,
then this is a function in C1

c (R) and its derivative is v′ = (p− 1) |u′|p−2 u′′. Then for
w = uv, we have w′ = |u′|p + (p − 1)uu′′ |u′|p−2. Hence, by integration by part, we
have due to compact support∫

R
|u′|p = (p− 1)

∫
R
uu′′ |u′|p−2 ≤ (p− 1)(

∫
R
|u′′u|

p
2 )

2
p (
∫
R
|u′|(p−2) p

p−2 )
p−2
p

where we used Hölder with exponents p2 and p
p−2 . Hence by dividing by (

∫
R |u′|

(p−2) p
p−2 )

p−2
p ,

we get

(
∫
R
|u′|p)

2
p ≤ (p− 1)(

∫
R
|u′′u|

p
2 )

2
p ⇔

∫
R
|u′|p ≤ (p− 1)

p
2

∫
R
|uu′′|

p
2

(b) Again fix u ∈ C∞0 (Ω). We have

‖u‖Lp(Ω) = ‖u‖
1
2
Lp(Ω) ‖u‖

1
2
Lp(Ω) ≤ ‖u‖

1/2
Lp(Ω) ‖u‖

1/2
W 2,p(Ω)

By (a) for i = 1, . . . , n, we have for x ∈ Ω with xi = 0, that∫
R
|∂iu(x+ tei)|p dt ≤ C(p)

∫
R

∣∣∣u(x+ tei)∂2
i u(x+ tei)

∣∣∣ p2 dt

Now integrating over all the other components, we get∫
Ω
|∂iu|p ≤ C(p)

∫
Ω

∣∣∣u∂2
i u
∣∣∣ p2 ≤ C(p)(

∫
Ω
|u|p) 1

2 (
∫

Ω

∣∣∣∂2
i u
∣∣∣p) 1

2
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where we used Hölder with exponents 2 and 2. And hence taking the pth root and
summing up all the estimates, we get

‖u‖W 1,p(Ω) ≤ C(n, p) ‖u‖1/2
Lp(Ω) ‖u‖

1/2
W 2,p(Ω)

(c) As before in (b), we get∫
Ω
|∂iu|p ≤ C(p)

∫
Ω

∣∣∣u∂2
i u
∣∣∣ p2 ≤ C(p) ‖u‖

p
2
L∞(Ω)

∫
Ω

∣∣∣∂2
i u
∣∣∣ p2

And hence taking the pth root and summing up all the estimates, we get

‖u‖W 1,p(Ω) ≤ C(n, p) ‖u‖1/2
L∞(Ω) ‖u‖

1/2
W 2, p2 (Ω)
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