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7.1. Special cases of Gagliardo-Nirenberg Use exercise 6.5, to derive the
following inequality∥∥∥∂ju∥∥∥

Lq
≤ C ‖u‖1−λ

Lr

∥∥∥∂ku∥∥∥λ
Lp

(1)

for all u ∈ C∞(Rn) and where C > 0 only depends on j, k, n, q, p, r, λ for the case
where

(a) p ≥ 2, λ = j
k
, 0 < j < k, q = p = r.

(b) p ≥ 2, λ = j
k
, 0 < j < k, q = kp

j
, r =∞, jq = kp > n.

Hint: For (a), use induction on k. Apply the induction hypothesis on functions of
∂1u and derive an inequality for ‖∂1u‖ involving only terms you want to keep.

For (b), convince yourself that (1) holds with q̃ ≥ 2 and p̃, r̃ such that 1
2r̃ + 1

2p̃ = 1
q̃
,

k = 2, j = 1. Then apply this with q̃ = kp
k−1 , r̃ = kp

k−2 and p̃ = p to functions of ∂k−2u.
Again get rid of unwanted terms, by using the induction hypothesis for some special
p∗ to prove the case j = k − 1. Now prove it for all other j.

Solution:

(a) We prove this by induction. The case j = 1, k = 2 was proven in Exercise 6.5.
Now for k ≥ 3, we will assume the inequality (1) with constant CJ,K for 2 ≤ K ≤ k−1
and 0 < J < K. Fix 0 < j < k − 1. Apply the inequality (1) with K = k − 1 and
J = j on the functions of ∂1u to get∥∥∥∂j+1u

∥∥∥
Lp
≤ Cj,k−1

∥∥∥∂1u
∥∥∥1− j

k−1

Lp

∥∥∥∂ku∥∥∥ j
k−1

Lp

Also for K = j + 1 and J = 1 to u, and get∥∥∥∂1u
∥∥∥
Lp
≤ C1,j+1 ‖u‖

1− 1
j+1

Lp

∥∥∥∂j+1u
∥∥∥ 1

j+1

Lp
.

Plugging the latter in the former on the righthand side, we get∥∥∥∂j+1u
∥∥∥
Lp
≤ Cj,k−1(C1,j+1 ‖u‖

1− 1
j+1

Lp

∥∥∥∂j+1u
∥∥∥ 1

j+1

Lp
)1− j

k−1
∥∥∥∂ku∥∥∥ j

k−1

Lp

⇒
∥∥∥∂j+1u

∥∥∥ kj
(j+1)(k−1)

Lp
≤ Cj,k−1C1,j+1 ‖u‖

(1− 1
j+1 )(1− j

k−1 )
Lp

∥∥∥∂ku∥∥∥ j
k−1

Lp

which implies (1) for J = j + 1, K = k and constant Cj+1,k := (Cj,k−1C1,j+1)
(k−1)(j+1)

kj .
The only case missing is J = 1 and K = k. For this we combine (1) for K = k − 1,
J = 1 and K = k and J = k − 1.∥∥∥∂1u

∥∥∥
Lp
≤ C1,k−1 ‖u‖

1− 1
k−1

Lp

∥∥∥∂k−1u
∥∥∥ 1

k−1

Lp

≤ C1,k−1 ‖u‖
1− 1

k−1
Lp (Ck−1,k ‖u‖

1− k−1
k

Lp

∥∥∥∂ku∥∥∥ k−1
k

Lp
)

1
k−1
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which is (1) with C1,k := C1,k−1C
1

k−1
k−1,k. This proves (a).

(b) We prove this by induction. The case j = 1, k = 2 was proven in Exercise 6.5.
Now for k ≥ 3, we will assume the inequality (1) for 2 ≤ K ≤ k − 1, p∗ ≥ 2 and
0 < J < K. Start with the case J = k − 1. By the same reasoning as in 6.5, we have
the inequality (1) with q̃ ≥ 2 and p̃, r̃ such that 1

2r̃ + 1
2p̃ = 1

q̃
. This inequality with

q̃ = kp
k−1 , r̃ = kp

k−2 and p̃ = p, applied to the functions of ∂k−2u reads
∥∥∥∂k−1u

∥∥∥
L

kp
k−1
≤ C1

∥∥∥∂k−2u
∥∥∥ 1

2

L
kp

k−2

∥∥∥∂ku∥∥∥ 1
2

Lp
.

Now to get rid of the term
∥∥∥∂k−2u

∥∥∥ 1
2

L
kp

k−2
, we write kp

k−2 = kp
k−1

k−1
k−2 = p∗K

J
and so by

induction hypothesis, we have∥∥∥∂k−2u
∥∥∥
L

kp
k−2
≤ C2

∥∥∥∂k−1u
∥∥∥ k−2

k−1

L
kp

k−1
‖u‖

1
k−1
L∞

Putting the latter into the former will again yield (1) as∥∥∥∂k−1u
∥∥∥
L

kp
k−1
≤ C

j
k
1 C

j
2k
2 ‖u‖

1− k−1
k

L∞

∥∥∥∂ku∥∥∥ k−1
k

Lp
.

For 0 < j < k − 1, we will use the decomposition kp
j

= kp
k−1

k−1
j

= p∗K
J
together with

the induction hypothesis and the case J = k − 1 which we already established to get∥∥∥∂ju∥∥∥
L

kp
j
≤ C

∥∥∥∂k−1u
∥∥∥ j

k−1

L
kp

k−1
‖u‖1− j

k−1
L∞

≤ C ′(‖u‖1− k−1
k

L∞

∥∥∥∂ku∥∥∥ k−1
k

Lp
)

j
k−1 ‖u‖1− j

k−1
L∞

≤ C ′
∥∥∥∂ku∥∥∥ j

k

Lp
‖u‖1− j

k
L∞ .

This finishes the proof of (b).

7.2. Poincaré inequality Let 1 ≤ p ≤ ∞ and Ω ⊂ Rn be a bounded open subset
with C1 boundary. Then there is C := C(Ω, p) > 0 such that for all u ∈ W 1,p(Ω), we
have

‖u− u‖Lp(Ω) ≤ C ‖∇u‖Lp(Ω) (2)

where u := 1
|Ω|
∫
Ω u(y) dy.

Hint: Assume by contradiction that there is a counter-example uk for every
C = k ∈ N in (2). Then subtract the average and renormalise in Lp, to get a sequence
vk. Now use Rellich-Kondrachov compactness result to get a contradiction.
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Solution: As in the hint, assume there are uk ∈ W 1,p(Ω) such that

‖uk − uk‖Lp(Ω) ≥ k ‖∇uk‖Lp(Ω) .

Then define

vk := uk − uk
‖uk − uk‖Lp(Ω)

and observe that

vk = 0, ‖∇vk‖Lp(Ω) = 1 and ‖∇vk‖Lp(Ω) ≤
1
k
. (3)

So the sequence vk is bounded in W 1,p(Ω). Thus by Rellich-Kondrachov compactness,
there is a subsequence vkj

of vk and a function v ∈ Lp(Ω), such that vkj
→ v in Lp(Ω)

for j →∞. Thus in particular, we have

v = 0 and ‖v‖Lp(Ω) = 1.

Furthermore, we have for ϕ ∈ C∞0 (Ω) that for i = 1, . . . , n∫
Ω
v∂iϕ = lim

j→∞

∫
Ω
vkj
∂iϕ = − lim

j→∞

∫
Ω
∂i(vkj

)ϕ = 0

where we used a bit everywhere that Ω is bounded plus dominated convergence and in
the last equality we used (3). Thus we have that ∇v = 0, therefore we know that v is
constant almost everywhere. This constant has to be zero as v = 0 which contradicts
‖v‖Lp(Ω) = 1.

7.3. Explosion of the constant in 7.2 Let Ωk ⊂ R2 be the domain of two squares
connected with a small bridge1. In formulae,

Ωk := [−3,−1]× [−1, 1] ∪ [1, 3]× [−1, 1] ∪ [−1, 1]× [0, 1
k

].

Check that limk→∞Ck =∞ where Ck := C(Ωk, p) in (2).

Solution: For any large k, we wish to find a function uk ∈ W 1,p(Ωk) which forces
the constant Ck of the inequality to be large. As k increases, the domain varies only
by the bridge, which becomes increasing narrow. We exploit this to construct our
functions uk. They will concentrate their derivatives on the shrinking bridge taking

1 We write down a Lipschitz domain for ease of notation. One can smoothen the corners to get a
C1 domain as required in 7.2 or one can assume to know that Rellich-Kondrachov theorem also
holds for Lipschitz domains which is true, but has not proven in the lecture course.
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constant values on the two large squares. Thus they will deviate significantly from
the average. Indeed, set u : Ωk → R to be

uk(x, y) =


−1 for x ≤ −1

1 for x ≥ 1
x for −1 ≤ x ≤ 1

Thus, uk is continuous on Ωk, and by symmetry ū = 0. Let 1B be the characteristic
function of the bridge. Then

∇u(x, y) =
(

1
0

)
1B.

Moreover,

‖∇u‖pLp(Ωk) =
∫

[−1,1]×[0, 1
k

]
1 dxdy = 1

k

while at the same time

‖u− u‖pLp(Ωk) =
∫

Ωk

|u|p ≥ 8

Combining these two facts with the inequality (2), we see that 8 ≤ Cp
k

1
k
. Therefore,

limk→∞Ck =∞.

7.4. Weak solutions of ∆u = ∂jf Let u, f ∈ L1(Rn) have compact support. Show
that u is a weak solution of

∆u = ∂jf (4)

if and only if u = ∂jK ∗ f where K is the fundamental solution of the Laplace
operator.

Hint: Recall that ∂jK(x) = xj

ωn|x|n and exercise 5.2.

Solution: Start with u being a weak solution of our equation (4). This means that
for every ϕ ∈ C∞0 (Rn),∫

Rn
u(y)∆ϕ(y) dy = −

∫
Rn
f(y) ∂

∂yj
ϕ(y) dy.

Plugging in the function ρδ(x− y) where ρδ is a mollifying kernel, we get

∆(ρδ ∗ u) = ∂j(ρδ ∗ f).
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where the minus disappears, as we differentiate with respect to y. Now taking the
convolution product with K on both sides and recalling that the fundamental solution
has the property K ∗∆ϕ = ϕ for ϕ ∈ C∞0 (Rn), we get

ρδ ∗ u = K ∗ ∂j(ρδ ∗ f)

At this point we recall from Exercise 5.2, that ∂jK is the weak derivative of K. Now as
we can distribute the derivatives over the factors as we want and as ∗ is commutative,
we get

ρδ ∗ u = ρδ ∗ (∂jK ∗ f).

As Kj is in L1
loc(Rn), ∂jK ∗ f ∈ L1

loc(Rn) and so as δ → 0, we have

u = ∂jK ∗ f

almost everywhere, so they agree as L1(Rn) functions.

For the converse, assume u = ∂jK ∗ f . Recall from exercise 5.2, that and that
∂jK(x) = −(∂jK)(−x). Thus, we have for ϕ ∈ C∞0 (Rn), that∫

Rn
u∆ϕ =

∫
Rn

(∂jK ∗ f)∆ϕ

= −
∫
Rn
f(∂jK ∗∆ϕ)

= −
∫
Rn
f ∗ (K ∗∆∂jϕ)

= −
∫
Rn
f∂jϕ.

which is exactly the statement that u is weak solution of our equation (4).

7.5. Subtle difference or maybe not. Prove that W 1,p(Rn) = W 1,p
0 (Rn), where

W 1,p
0 (Rn) is the closure of C∞0 (Rn) in W 1,p(Rn).

Solution: Let u ∈ W 1,p(Rn) and let us try to approximate this function by functions
of C∞0 (Rn). Fix ε > 0. By a result of the course, we already have for ρδ a mollifying
kernel, for δ > 0 sufficiently small, we have

‖u− ρδ ∗ u‖W 1,p(Rn) ≤
ε

4
Now take a cut-off function β ∈ C∞(Rn) such that

β ≡ 1 on |x| ≤ 1, β ≡ 0 on |x| ≥ 2,
|∇β| ≤ 2 and 0 ≤ β ≤ 1 on 1 ≤ |x| ≤ 2.
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Set βR(x) := β(R−1x), R > 0. Therefore,

βR ≡ 1 on |x| ≤ R, βR ≡ 0 on |x| ≥ 2R,
|∇βR| ≤ 2R−1 and 0 ≤ βR ≤ 1 on R ≤ |x| ≤ 2R.

Our approximating function will have the form βR(ρδ ∗ u) ∈ C∞0 (Rn). For R > 2 big
enough, we will have

‖ρδ ∗ u‖W 1,p(Rn\BR(0)) ≤
ε

4 .

Hence,

‖ρδ ∗ u− βR(ρδ ∗ u)‖W 1,p(Rn) = ‖ρδ ∗ u‖W 1,p(Rn\B2R(0))

+ ‖ρδ ∗ u− βR(ρδ ∗ u)‖W 1,p(B2R(0)\BR(0))

≤ ‖ρδ ∗ u‖W 1,p(Rn\B2R(0))

+ ‖ρδ ∗ u− βR(ρδ ∗ u)‖Lp(B2R(0)\BR(0))

+ ‖−(∇βR)ρδ ∗ u‖Lp(B2R(0)\BR(0))

+ ‖(1− βR)∇(ρδ ∗ u)‖Lp(B2R(0)\BR(0))

≤ (2 + 2R−1) ε4 ≤
3ε
4

Thus all in all, we get

‖u− βR(ρδ ∗ u)‖W 1,p(Rn) ≤ ε.

Therefore, as ε > 0 was arbitrary, we have W 1,p
0 (Rn) = W 1,p(Rn).

7.6. Let Ω ⊂ Rn be a bounded open set with smooth boundary. Let u ∈ W k,p(Ω)
and suppose that

∂αu|∂Ω = 0,

for every multi-index α of order |α| ≤ k − 1. Define u : Rn → R by

ũ(x) :=
{
u(x) for x ∈ Ω
0 for x ∈ Rn \ Ω.

Prove that ũ ∈ W k,p(Rn).

Hint: For |α| ≤ k, define ũα : Rn → R by

ũα(x) =
{
∂αu(x) for x ∈ Ω
0 for x ∈ Rn \ Ω.
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Prove that ũα is the weak derivative of u associated with the multi-index α.

Solution: We want to prove that ũα is the weak derivative of index α of ũ. This
means that for ϕ ∈ C∞0 (Rn)

(−1)|α|
∫
Rn
ũ∂αϕ =

∫
Rn
ũαϕ.

In other words, we need to prove that for ϕ ∈ C∞(Ω)

(−1)|α|
∫

Ω
u∂αϕ =

∫
Ω
∂αuϕ.

We will prove this statement by induction on k ∈ N, the number of derivatives of u.

For k = 1, the result was already established in class.

Fix k ≥ 2. Now assume the induction hypothesis to hold for all u ∈ W j,p(Ω) with
∂αu|∂Ω = 0 for |α| ≤ j − 1 and 1 ≤ j ≤ k. We fix a multi-index α with |α| ≤ k and
m a non-zero component of α. Then for u ∈ W 1,p(Ω) with ∂αu|∂Ω = 0 for |α| ≤ k− 1,
we have that ∂α−emu ∈ W k,p(Ω) with ∂α−emu|∂Ω = 0 and that u ∈ W k−1,p(Ω) has
∂βu|∂Ω = 0 for all multi-index β with β ≤ (k − 1) − 1. Hence we get by induction
assumption, we get

(−1)|α|
∫

Ω
u∂αϕ = (−1)|α|

∫
Ω
u∂α−em(∂mϕ) = −

∫
Ω
∂α−emu(∂mϕ) =

∫
Ω
∂αuϕ

for all ϕ ∈ C∞(Ω). Thus ũ ∈ W k,p(Ω).
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