Exercise sheet 10

Due date: 13:00, May 17.
Location: Next to HG G 52.1.

Exercise 10.1 For probability measures $Q \ll P$ the (relative) entropy of Q with respect to P is defined as

$$
H(Q \mid P)=E_{P}\left[\frac{\mathrm{~d} Q}{\mathrm{~d} P} \ln \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right]=E_{Q}\left[\ln \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right]
$$

In this problem, we consider the trinomial market introduced in Exercise 2.3 with $m=r=0, u=-d, \pi^{1}=1$ and $p^{i}=P\left[S_{1}^{1}=1+i\right]$.
(a) Find the measure Q^{*} minimizing the relative entropy $H(Q \mid P)$ over all equivalent martingale measures Q.
(b) Find the strategy ϑ^{*} maximizing expected utility of final wealth, with initial wealth 0 and exponential utility with parameter α, i.e.,

$$
U_{w}(x)=1-e^{-\alpha x} \quad \text { and } \quad U_{c}(x)=0
$$

Verify that

$$
\frac{\mathrm{d} Q^{*}}{\mathrm{~d} P}=\frac{e^{\eta^{*} \cdot \Delta X_{1}}}{E\left[e^{\eta^{*} \cdot \Delta X_{1}}\right]},
$$

with $\eta^{*}=-\alpha \vartheta^{*}$.
Exercise 10.2 Consider the asset given by the following tree:

where the fractions denote probabilities. Let $S_{k}^{0}=(1+r)^{k}$ and

$$
-1<r \in(d, u) \cap\left(d_{u}, u_{u}\right) \cap\left(d_{d}, u_{d}\right) \neq \emptyset
$$

i.e., the market is arbitrage-free.

Strategies here can be identified with vectors in \mathbb{R}^{3} via $\vartheta=\left(\vartheta_{1}, \vartheta_{2}^{u}, \vartheta_{2}^{d}\right)$. Find the optimizer ϑ^{*} to the problem of maximizing (exponential) utility of final wealth:

$$
\max _{\vartheta \in \mathbb{R}^{3}} E\left[1-\exp \left(-v_{0}-G_{2}(\vartheta)\right)\right] .
$$

Exercise 10.3 Consider a general arbitrage-free single-period market.Fix x and let $U:[0, \infty) \rightarrow \mathbb{R}$ be a concave, increasing (utility) function, continuously differentiable on $(0, \infty)$, such that

$$
\sup _{\vartheta \in \mathcal{A}(x)} E\left[U\left(x+\vartheta \cdot \Delta X_{1}\right)\right]<\infty
$$

with

$$
\mathcal{A}(x)=\left\{\vartheta \in \mathbb{R}^{d} \mid x+\vartheta \cdot \Delta X_{1} \geq 0 P \text {-a.s. }\right\} .
$$

Furthermore, assume that the supremum is attained in an interior point ϑ^{*} of $\mathcal{A}(x)$.
(a) Show that

$$
U^{\prime}\left(x+\vartheta^{*} \cdot \Delta X_{1}\right)\left|\Delta X_{1}\right| \in L^{1}(P)
$$

and the first order condition

$$
E\left[U^{\prime}\left(X+\vartheta^{*} \cdot \Delta X_{1}\right) \Delta X_{1}\right]=0
$$

Hint: You may use that

$$
y \mapsto \frac{U(y)-U(z)}{y-z}, \quad y \in(0, \infty) \backslash\{z\}
$$

is nonincreasing. By optimality, ϑ^{*} is better than $\vartheta^{*}+\varepsilon \eta$ for any $\eta \neq 0$ and $0<\varepsilon \ll 1$; so take the difference of corresponding utilities, divide by ε and look at $\varepsilon \searrow 0$. Exploit the hint to see that this quantity is monotonic in ε.
(b) Show that Q given by

$$
\frac{\mathrm{d} \bar{Q}}{\mathrm{~d} P}=\frac{U^{\prime}\left(x+\vartheta^{*} \cdot \Delta X_{1}\right)}{E\left[U^{\prime}\left(x+\vartheta^{*} \cdot \Delta X_{1}\right)\right]}
$$

is an equivalent martingale measure.

