Exercise sheet 11

Due date: 13:00, May 23.
Location: Next to HG G 52.1.
Exercise 11.1 Consider the arbitrage-free market in T periods with a riskless bond with zero interest rate. Assume that $H \in L_{+}^{0}\left(\mathcal{F}_{T}\right)$ is an attainable claim and fix one EMM Q. Let U be an exponential utility function, $\mathcal{A}=\Theta$ be the set of predictable processes, and consider the two functions

$$
u(x)=\max _{\vartheta \in \mathcal{A}} E\left[U\left(x+G_{T}(\vartheta)\right)\right]
$$

and

$$
u_{H}(x)=\max _{\vartheta \in \mathcal{A}} E\left[U\left(x+G_{T}(\vartheta)-H\right)\right] .
$$

Given a wealth level x, the utility indifference price $p_{H}(x)$ of H is defined as the solution to

$$
u(x)=u_{H}\left(x+p_{H}(x)\right)
$$

(a) Show that $E_{Q}[H]$ is the unique solution to the above equation.
(b) Can the assumptions on the utility function be generalized?

Exercise 11.2 Recall the market structure from Exercise 10.2:

where the fractions denote probabilities. Let $S_{k}^{0}=(1+r)^{k}$ and

$$
-1<r \in(d, u) \cap\left(d_{u}, u_{u}\right) \cap\left(d_{d}, u_{d}\right) \neq \emptyset
$$

Strategies are identified with vectors in \mathbb{R}^{3} via $\vartheta=\left(\vartheta_{1}, \vartheta_{2}^{u}, \vartheta_{2}^{d}\right)$. Find the optimizer ϑ^{*} to the problem

$$
\max _{\vartheta \in \mathbb{R}^{3}} E\left[1-\exp \left(-v_{0}-G_{2}(\vartheta)\right)\right] .
$$

using dynamic programming.

Exercise 11.3 Consider an individual with endowment (income) $\left(e_{0}, \ldots, e_{T}\right)$, $e_{0}>0$ and who only invests in the riskless bank account $S_{k}^{0}=(1+r)^{k}$. Denote by W_{k} the wealth held in the bank account when leaving time point $k-1$ and $W_{0}=v_{0}$. Then, for any consumption strategy,

$$
W_{k+1}=\left(W_{k}+e_{k}-c_{k}\right)(1+r)
$$

With $\beta \in(0,1]$, the individual aims to maximize

$$
E\left[\sum_{k=0}^{T} \beta^{k} U\left(c_{k}\right)\right]
$$

subject to

$$
v_{0}+\sum_{k=0}^{T} e^{-r k}\left(e_{k}-c_{k}\right)=0
$$

over all (possibly negative) consumption plans, and where $\tilde{\beta}=1 / \beta-1$ is a so-called impatience parameter. For simplicity, we will consider $\tilde{\beta}=r$. Assume that U is described by a quadratic parabola, so that U^{\prime} is an affine function. ${ }^{1}$
Find the optimal consumption strategy.

[^0]
[^0]: ${ }^{1}$ We make this assumption for the sake of the exercise, even though a parabola is not increasing on a sufficiently large domain.

