## Exercise sheet 7

Due date: 13:00, April 25.
Location: Next to HG G 52.1.
Exercise 7.1 Construct probability measures $P$ and $Q$ such that $Q \stackrel{\text { loc }}{\approx} P$, but $Q \not \approx P$.

Exercise 7.2 In Exercise 4.3, we have introduced a multi-period binomial market. In a similar fashion, we construct a trinomial market: Fix $r>-1$ and let $S_{k}^{0}=(1+r)^{k}$. Now define $S_{0}^{1}=1$ and

$$
S_{k}^{1}=\prod_{i=1}^{k} R_{i}^{1}, \quad k=1, \ldots, T,
$$

where the $R_{k}^{1}$ are i.i.d. and

$$
P\left[R_{k}^{1}=1+u\right]=p^{u}, \quad P\left[R_{k}^{1}=1+m\right]=p^{m}, \quad P\left[R_{k}^{1}=1+d\right]=p^{d}
$$

all $>0$, for $u>m>d$ and $u>r>d$. Note that the superscipts do not indicate powers.

Find the set of all equivalent martingale measures. You may provide an answer with, e.g., $T=2$.
Hint: Use $\Omega=\{u, m, d\}^{T}$.
Exercise 7.3 In this exercise, we consider the probability space $(\Omega, \mathcal{F}, P)$ with $\mathcal{F}_{0}$ trivial and $\mathcal{F}_{1}=\mathcal{F}=\sigma\left(S_{1}^{1}\right)$ and with assets given by

$$
\begin{array}{ll}
S_{0}^{0}=1, & S_{0}^{1}=1 \\
S_{1}^{0}=e^{r}, & S_{1}^{1}=e^{Y},
\end{array}
$$

where $Y$ follows a standard normal distribution under $P$.
(a) Show that $Q$ given by

$$
\frac{d Q}{d P}=\exp \left(-\left(\frac{1}{2}-r\right) Y-\frac{\left(\frac{1}{2}-r\right)^{2}}{2}\right)
$$

is an equivalent martingale measure.
(b) Show that $S^{1} / S^{0}$ does not have a unique EMM by constructing an unattainable payoff.

