Exercise sheet 9

Due date: 13:00, May 9.

Location: Next to HG G 52.1.

Exercise 9.1 Recall that an investment and consumption pair (ψ, \tilde{c}) is self-financing if $\psi_1 \cdot S_0 + \tilde{c} = \tilde{v}_0$ and

$$\Delta \psi_{k+1} \cdot S_k + \tilde{c}_k = 0,$$

for $k = 1, \ldots, T - 1$. Define the undiscounted wealth by $\tilde{W}_0 = \tilde{v}_0$ and $\tilde{W}_k := \psi_k \cdot S_k$, $\tilde{W}_0 := \tilde{v}_0 = \psi_1 \cdot S_0 + \tilde{c}_0$, for $k = 1, \ldots, T$, $W = \tilde{W}/S^0$ and $c = \tilde{c}/S^0$.

(a) Show in detail that (ψ, \tilde{c}) is self-financing if and only if

$$W_k = v_0 + \sum_{j=1}^k (\vartheta_j \cdot \Delta X_j - c_{j-1}), \quad \text{for } k = 0, \dots, T.$$

(b) Show that the pair (ψ, \tilde{c}) with initial wealth \tilde{v}_0 is self-financing if and only if

$$\tilde{W}_k = \tilde{v}_0 + \sum_{j=1}^k \vartheta_j \cdot \Delta S_j - \sum_{j=0}^{k-1} \tilde{c}_j.$$

Exercise 9.2 For a twice differentiable utility function $U : [0, \infty) \to \mathbb{R}$, the so-called *relative risk aversion* is given by

$$-\frac{xU''(x)}{U'(x)}.$$

- (a) Characterize all utility functions $U = U^{\gamma}$ with constant relative risk aversion equal to γ . Normalize the functions so that $U^{\gamma}(1) = 0$ and $(U^{\gamma})'(1) = 1$.
- (b) Verify that $\lim_{\gamma \to 1} U^{\gamma}(x) = U^{1}(x)$ for all x.
- (c) For a differentiable function $f : [0, \infty) \to [0, \infty)$, the *elasticity* of f is defined as

$$\frac{xf'(x)}{f(x)}$$

Show that with $U^{\gamma}(0) = 0$ instead of the normalization above, utility functions with constant relative risk aversion $\gamma \neq 1$ also have constant elasticity.

Exercise 9.3 Consider a general arbitrage-free market with a numéraire, positive asset prices and T = 1. Denote by H^{call} the (discounted) payoff of a call option with discounted strike K > 0, i.e.,

$$H^{\text{call}} = \left(X_1^1 - K\right)^+.$$

Updated: April 29, 2016

1 / 2

(a) Show that

$$\left(X_0^1 - K\right)^+ \le \pi_b(H^{\text{call}}) \le \pi_s(H^{\text{call}}) \le X_0^1.$$

Now consider the market introduced in Exercise 7.3, i.e., (Ω, \mathcal{F}, P) with \mathcal{F}_0 trivial, $\mathcal{F} = \mathcal{F}_1 = \sigma(S_1^1)$ and assets given by

$$S_0^0 = 1,$$
 $S_0^1 = 1,$
 $S_1^0 = e^r,$ $S_1^1 = e^Y,$

where Y follows a standard normal distribution under P. Define the set

$$\Pi^{\text{bin}}(H^{\text{call}}) = \left\{ E_{P^b} \left[H^{\text{call}} \right] \middle| \begin{array}{c} P^b \circ (S_1^1)^{-1} \text{ has mass} \\ \text{in two points and} \end{array} \\ E_{P^b} \left[\frac{S_1^1}{e^r} \right] = S_0^1 \right\}$$

as the set of arbitrage-free prices under measures for which the market is binomial.

- (b) Construct a sequence of martingale measures absolutely continuous to P that converges weakly to a martingale measure P^b such that the law of S_1^1 under P^b has mass in only two points.
- (c) Show that

$$\Pi^{\mathrm{bin}}(H^{\mathrm{call}}) \subseteq \left[\pi_b(H^{\mathrm{call}}), \pi_s(H^{\mathrm{call}})\right].$$

(d) Show that

 $\sup \Pi^{\mathrm{bin}}(H^{\mathrm{call}}) = 1 \quad \text{and} \quad \inf \Pi^{\mathrm{bin}}(H^{\mathrm{call}}) = (1 - K)^+,$

and conclude that the universal bounds in (a) are attained in this market.