Sheet 5

- 1. Prove that $SL_3(\mathbb{R})$ has property (T) using effective decay of matrix coefficients. *Hint:* Let $\varphi \in C_c^{\infty}(SL_3(\mathbb{R}))$ non-negative, with integral 1 and look at the self-adjoint contraction $\pi(\varphi)^*(\pi_{a_t} + \pi_{a_t}^{-1})\pi(\varphi)$.
- 2. Let $p \geq 3$ prime. Show that every non-trivial, finite dimensional, complex representation of $SL_2(\mathbb{F}_p)$ has dimension at least $\frac{p-1}{2}$. Hint: $\frac{p-1}{2}$ is the number of squares in \mathbb{F}_p .
- **3.** Let G be a finite group and $H = \mathbb{R}^2 \rtimes G$. Assume that for some $t \in \hat{\mathbb{R}}^2$ nontrivial holds $G_t = \{g \in G; \hat{\theta}_g(t) = t\}$ is non-trivial. Let ρ be any irreducible, unitary representation of G_t . Construct a representation π of H such that for the eigenspace V_t of \mathbb{R}^2 for the character t holds $\pi_{G_t}|_{V_t} \cong \rho$.
- 4. Let $A := \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, let $G := \mathbb{Z}^2 \rtimes \mathbb{Z}$, where (1,0) acts on \mathbb{Z}^2 by A. Note that $\widehat{\mathbb{Z}^2} \cong \mathbb{T}^2$. Show that the following construction yields an (irreducible) unitary representation of G: Fix an A-invariant, σ -finite (ergodic) measure on T^2 , and let $\mathcal{H}_{\mu} := L^2(\mathbb{T}^2, \mu)$, with the action of G on \mathcal{H}_{μ} by the multiplication action for \mathbb{Z}^2 and the measure-preserving Koopman operator for \mathbb{Z} .

The exercises in this sheet will not feature among those examined in the final exam.