Sheet 6

- 1. Let G be a finite group and $H = \mathbb{R}^2 \rtimes G$. Assume that for some $t \in \hat{\mathbb{R}}^2$ non-trivial holds $G_t = \{g \in G; \hat{\theta}_g(t) = t\}$ is non-trivial. Let ρ be any irreducible, unitary representation of G_t . Construct a representation π of H such that for the eigenspace V_t of \mathbb{R}^2 for the character t holds $\pi_{G_t}|_{V_t} \cong \rho$.
- 2. Let $A := \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, let $G := \mathbb{Z}^2 \rtimes \mathbb{Z}$, where (1,0) acts on \mathbb{Z}^2 by A. Note that $\widehat{\mathbb{Z}^2} \cong \mathbb{T}^2$. Show that the following construction yields an (irreducible) unitary representation of G:

 Fix an A-invariant, σ -finite (ergodic) measure on T^2 , and let $\mathcal{H}_{\mu} := L^2(\mathbb{T}^2, \mu)$, with the action of G on \mathcal{H}_{μ} by the multiplication action for \mathbb{Z}^2 and the measure-preserving Koopman operator for \mathbb{Z} .
- 3. Recall that for a given character χ on A extended to B = MAN, the principal series representation corresponding to the character χ is its induced representation on $G = \mathrm{SL}_2(\mathbb{R})$.
 - a) Prove that the resulting representation is indeed unitary.
 - b) Prove that the representation is irreducible unless the character used in the induction procedure is trivial on A and non-trivial on M. Prove that in the latter case the resulting representation is the sum of two mock discrete series.
 - c) Prove that matrix coefficients for these representations satisfy the same bound by the Harish-Chandra function as matrix coefficients for the regular representation of G and hence the principal series representations are tempered.
- 4. Recall that π_0 was the unitary representation of $\mathrm{SL}_2(\mathbb{R})$ obtained by induction of the trivial representation on B. Generalize this construction to the group $\mathrm{SL}_2(\mathbb{C})$ and calculate the Harish-Chandra spherical function for $\mathrm{SL}_2(\mathbb{C})$.

These exercises will not feature among those examined in the final exam.