SOLUTIONS EXERCISE SHEET 2

MANUEL W. LUETHI

EXERCISE 2

Let $\Phi : \mathcal{H}_{\pi}(v) \to L^2_{\mu_v}(\hat{G})$ be the isomorphism (of unitary representations) defined by $\Phi(v) := \mathbb{1}_{\hat{G}}$. Assume that $w \in \mathcal{H}_{\pi}(v)$ is a (normalized) eigenvector for G with eigenvalue $\chi_0 \in \hat{G}$. Then:

$$\chi_0(g) = \langle \pi_g w, w \rangle_{\pi} = \langle \pi_g \Phi(w), \Phi(w) \rangle_{L^2(\mu_v)} = \int_{\hat{G}} \langle g, \xi \rangle \left| \Phi(w)(\xi) \right|^2 \mathrm{d}\mu_v$$

The dual group is locally compact Hausdorff and its one-point compactification is a weak^{*} closed subset of the unit ball in $L^{\infty}(G)$, thus metrizable (under our standing assumptions). Because of the Hausdorff property, $\bigcap_{U \in \mathcal{U}_{\chi_0}} = \{\chi_0\}$, where \mathcal{U}_{χ_0} is a neighbourhood basis of χ_0 and by first countability we can assume that \mathcal{U} is countable. Assuming $\mu_v(\{\chi_0\}) = 0$ hence yields a contradiction by outer regularity of μ_v .

Now assume that $\mu_v({\chi_0}) > 0$, then $f := \mathbb{1}_{{\chi_0}} \in L^2_{\mu_v}(\hat{G})$ is a non-trivial eigenvector for the eigenvalue χ_0 , hence so is $w := \Phi^{-1}(f) \in \mathcal{H}_{\pi}(v)$.

Exercise 5

Let π a finite dimensional, unitary representation of $G = SL_2(\mathbb{R})$. As \mathcal{H}_{π} is finite dimensional, strong continuity implies uniform continuity of the representation. By a property of Lie groups, we get that the following diagram commutes:

$$\begin{array}{c} \mathfrak{g} \xrightarrow{\operatorname{exp}} G \\ \mathfrak{d}_{\pi} \downarrow & \downarrow_{\pi} \\ \mathfrak{gl}(\mathcal{H}_{\pi}) \xrightarrow{\operatorname{exp}} \operatorname{GL}(\mathcal{H}_{\pi}) \end{array}$$

Proof using the Mautner phenomenon: Continuity implies smoothness and thus $d\pi$ is a finite dimensional representation of $\mathfrak{sl}_2(\mathbb{R})$, so that there exists some non-trivial vector $v \in \mathcal{H}_{\pi}$ which is annihilated by $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Letting $u := \begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix}$, we get:

$$\pi_u v = \pi_{\exp(X)} v = \exp(\mathrm{d}\pi_X) v$$

but $\exp(d\pi_X)v = v$ and thus v is fixed under π_u . By the Mautner phenomenon $\mathbb{1} < \mathcal{H}_{\pi}$ and as of semicimplicity of finite dimensional representations of G, \mathcal{H}_{π} must be a trivial representation.

Proof using Howe-Moore: Let π be a finite-dimensional, unitary representation of G. Let $E_{\pi} := \{v \in \mathcal{H}_{\pi}; \pi_g v = v \forall g \in G\}$. Then $\mathcal{H}_{\pi} = E_{\pi} \oplus E_{\pi}^{\perp}$. We need to show that $E_{\pi}^{\perp} = \{0\}$. Assuming otherwise, fix $v \in E_{\pi}^{\perp}$ and assume that ||v|| = 1. Given $t \in \mathbb{R}$, denote $u_t := \begin{pmatrix} 1 & t \\ 1 \end{pmatrix}$. There is some sequence $(n_k)_{k \in \mathbb{N}}$ such that $n_k \uparrow \infty$ and $\pi_{u_{n_k}} v$ converges to some $v^* \in E_{\pi}^{\perp}$. Let $v_k := \pi_{u_{n_k}}$. Using Howe-Moore:

$$1 = \|v^*\|^2 = \lim_{k \to \infty} \langle v_k, v^* \rangle = 0$$

Date: March 18, 2016.

which is absurd. *E-mail address:* manuel.luethi@math.ethz.ch