## SOLUTIONS EXERCISE SHEET 2

MANUEL W. LUETHI

## ExERcise 2

Let $\Phi: \mathcal{H}_{\pi}(v) \rightarrow L_{\mu_{v}}^{2}(\hat{G})$ be the isomorphism (of unitary representations) defined by $\Phi(v):=\mathbb{1}_{\hat{G}}$. Assume that $w \in \mathcal{H}_{\pi}(v)$ is a (normalized) eigenvector for $G$ with eigenvalue $\chi_{0} \in \hat{G}$. Then:

$$
\chi_{0}(g)=\left\langle\pi_{g} w, w\right\rangle_{\pi}=\left\langle\pi_{g} \Phi(w), \Phi(w)\right\rangle_{L^{2}\left(\mu_{v}\right)}=\int_{\hat{G}}\langle g, \xi\rangle|\Phi(w)(\xi)|^{2} \mathrm{~d} \mu_{v}
$$

The dual group is locally compact Hausdorff and its one-point compactifitcation is a weak* closed subset of the unit ball in $L^{\infty}(G)$, thus metrizable (under our standing assumptions). Because of the Hausdorff property, $\bigcap_{U \in \mathcal{U}_{\chi_{0}}}=\left\{\chi_{0}\right\}$, where $\mathcal{U}_{\chi_{0}}$ is a neighbourhood basis of $\chi_{0}$ and by first countability we can assume that $\mathcal{U}$ is countable. Assuming $\mu_{v}\left(\left\{\chi_{0}\right\}\right)=0$ hence yields a contradiction by outer regularity of $\mu_{v}$.

Now assume that $\mu_{v}\left(\left\{\chi_{0}\right\}\right)>0$, then $f:=\mathbb{1}_{\left\{\chi_{0}\right\}} \in L_{\mu_{v}}^{2}(\hat{G})$ is a non-trivial eigenvector for the eigenvalue $\chi_{0}$, hence so is $w:=\Phi^{-1}(f) \in \mathcal{H}_{\pi}(v)$.

## Exercise 5

Let $\pi$ a finite dimensional, unitary representation of $G=\mathrm{SL}_{2}(\mathbb{R})$. As $\mathcal{H}_{\pi}$ is finite dimensional, strong continuity implies uniform continuity of the representation. By a property of Lie groups, we get that the following diagram commutes:


Proof using the Mautner phenomenon: Continuity implies smoothness and thus $\mathrm{d} \pi$ is a finite dimensional representation of $\mathfrak{s l}_{2}(\mathbb{R})$, so that there exists some non-trivial vector $v \in \mathcal{H}_{\pi}$ which is annihilated by $X=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Letting $u:=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, we get:

$$
\pi_{u} v=\pi_{\exp (X)} v=\exp \left(\mathrm{d} \pi_{X}\right) v
$$

but $\exp \left(\mathrm{d} \pi_{X}\right) v=v$ and thus $v$ is fixed under $\pi_{u}$. By the Mautner phenomenon $\mathbb{1}<\mathcal{H}_{\pi}$ and as of semicimplicity of finite dimensional representations of $G, \mathcal{H}_{\pi}$ must be a trivial representation.

Proof using Howe-Moore: Let $\pi$ be a finite-dimensional, unitary representation of $G$. Let $E_{\pi}:=\left\{v \in \mathcal{H}_{\pi} ; \pi_{g} v=v \forall g \in G\right\}$. Then $\mathcal{H}_{\pi}=E_{\pi} \oplus E_{\pi}^{\perp}$. We need to show that $E_{\pi}^{\perp}=\{0\}$. Assuming otherwise, fix $v \in E_{\pi}^{\perp}$ and assume that $\|v\|=1$. Given $t \in \mathbb{R}$, denote $u_{t}:=\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right)$. There is some sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ such that $n_{k} \uparrow \infty$ and $\pi_{u_{n_{k}}} v$ converges to some $v^{*} \in E_{\pi}^{\perp}$. Let $v_{k}:=\pi_{u_{n_{k}}}$. Using Howe-Moore:

$$
1=\left\|v^{*}\right\|^{2}=\lim _{k \rightarrow \infty}\left\langle v_{k}, v^{*}\right\rangle=0
$$

Date: March 18, 2016.
which is absurd.
E-mail address: manuel.luethi@math.ethz.ch

