SOLUTIONS EXERCISE SHEET 4

MANUEL W. LUETHI

Exercise 1

Recall that:

$$
\mathrm{SU}(2)=\left\{\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right) ;|\alpha|^{2}+|\beta|^{2}=1\right\} \cong \mathbb{S}^{3} \subseteq \mathbb{C}^{2}
$$

with the homeomorphism $\psi: \mathbb{S}^{3} \rightarrow \mathrm{SU}(2)=: G$ given by $(\alpha, \beta) \mapsto\left(\begin{array}{cc}\alpha & \beta \\ -\bar{\beta} & \bar{\alpha}\end{array}\right)$. In particular, the volume measure on \mathbb{S}^{3} maps to a finite measure which does not vanish on open subsets by definition of the volume form. Note that:

$$
(\alpha, \beta) \underbrace{\left(\begin{array}{cc}
\delta & \eta \\
-\bar{\eta} & \bar{\delta}
\end{array}\right)}_{g}=(\alpha \delta-\beta \bar{\eta}, \alpha \eta+\beta \bar{\delta})
$$

Hence:

$$
\psi((\alpha, \beta) g)=\left(\begin{array}{cc}
\alpha \delta-\beta \bar{\eta} & \alpha \eta+\beta \bar{\delta} \\
-\overline{\alpha \eta}-\bar{\beta} \delta & \bar{\alpha} \bar{\delta}-\bar{\beta} \eta
\end{array}\right)=\psi(\alpha, \beta) g
$$

Note that G acts on \mathbb{S}^{3} by isometries, as naturally $G \hookrightarrow \mathrm{SO}(4)$. Hence the natural action of G preserves the Lebesgue measure on \mathbb{S}^{3} and thus the push forward of the Lebesgue measure on \mathbb{S}^{3} under ψ is a right-invariant Haar measure on G and by compactness, it is also left-invariant. In particular, using elementary calculus, the Haar measure on G up to normalization is given by:
$\int_{G} f(g) \mathrm{d} g=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\pi} f_{\psi}\left(\cos \varphi+\mathbf{i} \sin \varphi \cos \varrho, e^{\mathrm{i} \vartheta} \sin \varphi \sin \varrho\right) \sin ^{2} \varphi \sin \varrho \mathrm{~d} \varphi \mathrm{~d} \varrho \mathrm{~d} \vartheta$ for all $f \in \mathscr{C}(G)$, where $f_{\psi}:=f \circ \psi$. Denote:

$$
m(\varphi, \varrho, \vartheta):=\psi\left(\cos \varphi+\mathbf{i} \sin \varphi \cos \varrho, e^{\mathbf{i} \vartheta} \sin \varphi \sin \varrho\right)
$$

One calculates:

$$
\operatorname{det}(m(\varphi, \varrho, \vartheta)-X \mathbb{1})=X^{2}-2 \cos \varphi X+1
$$

Hence the eigenvalues of $m(\varphi, \varrho, \vartheta)$ are solely and completely determined by φ. By the spectral theorem for normal operators, every $g \in G$ is unitarily diagonalizable and in fact the unitary operator can be chosen in G. It follows that the conjugacy class of $m(\varphi, \varrho, \vartheta)$ is given by:

$$
[m(\varphi, \varrho, \vartheta)]=\left\{m\left(\varphi, \varrho^{\prime}, \vartheta^{\prime}\right) ; 0 \leq \varrho^{\prime} \leq \pi, 0 \leq \vartheta^{\prime}<2 \pi\right\}
$$

and thus for any conjugation invariant $F \in \mathscr{C}(G)$ holds:

$$
\int_{G} F(g) \mathrm{d} g=4 \pi \int_{0}^{\pi} F \circ \psi\left(e^{\mathrm{i} \varphi}, 0\right) \sin ^{2} \varphi \mathrm{~d} \varphi
$$

In particular, the push-forward of the Haar measure on G^{\natural} is given by:

$$
\int_{G^{\natural}} f(x) \mathrm{d} x=4 \pi \int_{0}^{\pi}(f \circ q)(m(\varphi, 0,0)) \sin ^{2} \varphi \mathrm{~d} \varphi
$$

Date: April 28, 2016.
where we denote by $q: G \rightarrow G^{\natural}$ the quotient map. The measure $\sin ^{2} \varphi \mathrm{~d} \varphi$ on $[0, \pi]$ is the so-called Sato-Tate measure. Note that the map from $[0, \pi]$ to G^{\natural} sending φ to the conjugacy class of $m(\varphi, 0,0)$ is a homeomorphism. Let $x, y \in G^{\natural}$ be distinct. Then x, y identify with two distinct pairs $\left\{\omega_{x}, \overline{\omega_{x}}\right\}$ and $\left\{\omega_{y}, \overline{\omega_{y}}\right\}$ in \mathbb{S}^{1}. Let $r: G^{\natural} \rightarrow \mathbb{R}$ denote the map sending a pair $\{\omega, \bar{\omega}\}$ to $r_{\{\omega, \bar{\omega}\}}:=\Re \omega$. Choose $\epsilon>0$ such that for $I_{\epsilon}(\{\omega, \bar{\omega}\}):=r^{-1}\left(r_{\{\omega, \bar{\omega}\}}-\epsilon, r_{\{\omega, \bar{\omega}\}}+\epsilon\right)$ holds $I_{\epsilon}(x) \cap I_{\epsilon}(y)=\emptyset$. If we can show that $r^{-1}(a, b)$ is open in G^{\natural} for any two real numbers $a<b$, then G^{\natural} is Hausdorff and the map $\varphi \mapsto m(\varphi, 0,0)$ is a homeomorphism. Let $g=\left(\begin{array}{cc}\alpha & \beta \\ -\bar{\beta} & \bar{\alpha}\end{array}\right) \in G$. Then $\operatorname{det}(g-X \mathbb{1})=X^{2}-2 \Re \alpha X+1$ as argued before. Hence:

$$
(r \circ q)^{-1}(a, b)=\left\{\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right) ;|\alpha|^{2}+|\beta|^{2}=1, a<\Re \alpha<b\right\}
$$

which is clearly open in G, proving that $I_{\epsilon}(x)$ and $I_{\epsilon}(y)$ are disjoint neighbourhoods of x and y respectively.

Let π be an irreducible representation of G, then there is $n \in \mathbb{N}$ such that:

$$
\mathcal{H}_{\pi} \cong\left\{f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} ; f \text { is homogeneous of degree } n\right\}=: V_{n}
$$

and the representation is given by precomposition with the inverse. The space \mathcal{H}_{π} has dimension $n+1$ and a basis given by the maps:

$$
(u, v) \mapsto f_{k}(u, v):=u^{k} v^{n-k} \quad 0 \leq k \leq n
$$

and in order to determine $\operatorname{tr} \pi_{g}$ for $g \in G$, it suffices to determine $\operatorname{tr} \pi_{m_{\varphi}}$ for $\varphi \in[0, \pi]$ and $m_{\varphi}:=m(\varphi, 0,0)$. Using the basis from above, this calculation is easy:

$$
\pi_{m_{\varphi}} f_{k}(u, v)=f_{k}\left(e^{-\mathbf{i} \varphi} u, e^{\mathbf{i} \varphi} v\right)=e^{-\mathbf{i} k \varphi} e^{\mathbf{i}(n-k) \varphi} f_{k}(u, v)
$$

It follows that:

$$
\operatorname{tr} \pi_{m_{\varphi}}=\sum_{k=0}^{n} e^{\mathbf{i}(n-2 k) \varphi}=\sum_{k=0}^{n} \cos ((n-2 k) \varphi)
$$

Exercise 2

(a) Let $E \subseteq \mathfrak{g}$ be a basis such that v has weak partial derivatives for all $x \in E$. We have to show that the partial derivatives $\pi(x) v$ exist for all $x \in E$. Let v_{x} be the weak partial derivative of v for $x \in E$.

Claim. For all $t \in \mathbb{R}$ holds:

$$
\pi_{\exp t x} v-v=\int_{0}^{t} \pi_{\exp s x} v_{x} \mathrm{~d} s
$$

Using Fréchet-Riesz and applying the definition of the integral, we have to show that on a dense subset $D \subseteq \mathcal{H}_{\pi}$ holds:

$$
\left\langle\pi_{\exp t x} v-v, w\right\rangle=\int_{0}^{t}\left\langle\pi_{\exp s x} v_{x}, w\right\rangle \mathrm{d} s
$$

Let $D:=\mathscr{C}_{\pi}^{\infty}$ be the dense set of smooth vectors. Let $\varphi_{w}(s)=\left\langle\pi_{\exp s x} v, w\right\rangle$. Using unitarity of π, one easily checks that for any \mathscr{C}_{π}^{1} vector $v \in \mathcal{H}$ and for any $x \in \mathfrak{g}$ holds:

$$
\lim _{h \rightarrow 0} \frac{1}{h}\left(\pi_{\exp h x} v-v\right)=\lim _{h \rightarrow 0} \frac{1}{-h}\left(\pi_{\exp (-h x)} v-v\right)
$$

This implies:

$$
\lim _{h \rightarrow 0} \frac{\varphi_{w}(s+h)-\varphi_{w}(s)}{h}=-\left\langle\pi_{\exp s x} v, \pi(x) w\right\rangle=\left\langle\pi_{\exp s x} v_{x}, w\right\rangle
$$

and thus $\varphi_{w} \in \mathscr{C}^{1}(\mathbb{R})$. In particular we get $\varphi_{w}(t)-\varphi_{w}(0)=\int_{0}^{t} \varphi_{w}^{\prime}(s) \mathrm{d} s$ by the fundamental theorem of calculus and the claim follows. An application of the Cauchy-Schwarz inequality yields:

$$
\lim _{t \rightarrow 0} \frac{\pi_{\exp t x} v-v}{t}=v_{x}
$$

(b) We have shown in class that any tuple $(v, w) \in \mathcal{H}_{\pi} \times \mathcal{H}_{\pi}^{n}$ in the closure of the graph of T satisfies:

$$
\left\langle w_{j}, u\right\rangle=-\left\langle v, \pi\left(x_{j}\right) u\right\rangle \quad \forall u \in \mathscr{C}_{\pi}^{1}
$$

where x_{1}, \ldots, x_{j} form a basis of \mathfrak{g}. In particular v has weak derivatives for a basis of \mathfrak{g} and thus $v \in \mathscr{C}_{\pi}^{1}$. Hence $(v, w) \in \operatorname{Graph}(T)$ and thus $\overline{\operatorname{Graph}(T)} \subseteq \operatorname{Graph}(T)$, implying that T is a closed operator.

