Exercise Series 9

Q1. Let $\alpha, \beta > 0$, the p.d.f. of a beta distribution with parameters α and β is

$$f(x|\alpha, \beta) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1} & \text{for } 0 < x < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Suppose that X_1, \cdots, X_n form a random sample from the Bernoulli distribution with parameter θ, which is unknown ($0 < \theta < 1$). Suppose also that the prior distribution of θ is the beta distribution with parameters $\alpha > 0$ and $\beta > 0$. Show that the posterior distribution of θ given that $X_i = x_i (i = 1, \ldots, n)$ is the beta distribution with parameters $\alpha + \sum_{i=1}^n x_i$ and $\beta + n - \sum_{i=1}^n x_i$.

In particular the family of beta distributions is a conjugate family of prior distributions for samples from a Bernoulli distribution. If the prior distribution of θ is a beta distribution, then the posterior distribution at each stage of sampling will also be a beta distribution, regardless of the observed values in the sample.

Q2. Let $\xi(\theta)$ be defined as follows: for constants $\alpha > 0$ and $\beta > 0$:

$$\xi(\theta) = \begin{cases} \frac{\beta^\alpha}{\Gamma(\alpha)}\theta^{-(\alpha+1)}e^{-\beta/\theta} & \text{for } \theta > 0, \\ 0 & \text{for } \theta \leq 0. \end{cases}$$

A distribution with this p.d.f. is called an inverse gamma distribution.

(a) Verify that $\xi(\theta)$ is actually a p.d.f..

(b) Consider the family of probability distributions that can be represented by a p.d.f. $\xi(\theta)$ having the given form for all possible pairs of constants $\alpha > 0$ and $\beta > 0$. Show that this family is a conjugate family of prior distributions for samples from a normal distribution with a known value of the mean μ and an unknown value of the variance θ.

Q3. Suppose that the number of defects in a 1200-foot roll of magnetic recording tape has a Poisson distribution for which the value of the mean θ is unknown, and the prior distribution of θ is the gamma distribution with parameters $\alpha = 3$ and $\beta = 1$. When five rolls of this tape are selected at random and inspected, the numbers of defects found on the rolls are 2, 2, 6, 0 and 3.

(a) What is the posterior distribution of θ?

(b) If the squared error loss function is used, what is the Bayes estimate of θ?
Q4. Let $c > 0$ and consider the loss function

$$L(\theta, a) = \begin{cases} c|\theta - a| & \text{if } \theta < a, \\ |\theta - a| & \text{if } \theta \geq a. \end{cases}$$

Assume that θ has a continuous distribution.

(a) Let $a \leq q$ be two real numbers, show that

$$\mathbb{E}[L(\theta, a) - L(\theta, q)] \geq (q - a)[\mathbb{P}(\theta \geq q) - c\mathbb{P}(\theta \leq q)],$$

and

$$\mathbb{E}[L(\theta, a) - L(\theta, q)] \leq (q - a)[\mathbb{P}(a \leq \theta) - c\mathbb{P}(\theta \leq a)].$$

(b) Prove that a Bayes estimator of θ will be any $1/(1 + c)$ quantile of the posterior distribution of θ.