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CHAPTER 1

Introduction

The main protagonists of this course are tensors and multilinear maps, just
like the main protagonists of a Linear Algebra course are vectors and linear maps.

Tensors are geometric objects that describe linear relations among objects in
space, and are represented by multidimensional arrays of numbers:

The indices can be upper or lower or, in tensor of order at least 2, some of them
can be upper and some lower. The numbers in the arrays are called components
of the tensor and give the representation of the tensor with respect to a given basis.

There are two natural questions that arise:

(1) Why do we need tensors?
(2) What are the important features of tensors?

(1) Scalars are no enough to describe directions, for which we need to resort to
vectors. At the same time, vectors might not be enough, in that they lack the ability
to “modify” vectors.

Example 1.1. We denote by B the magnetic fluid density measured in Volt ·sec/m2

and by H the megnetizing intensity measured in Amp/m. They are related by the
formula

B = µH ,

where µ is the permeability of the medium in H/m. In free space, µ = µ0 =
4π×10−7 H/m is a scalar, so that the flux density and the magnetization are vectors
differ only by their magnitude.

Other material however have properties that make these terms differ both in
magnitude and direction. In such materials the scalar permeability is replaced by
the tensor permeability µ and

B = µ ·H .

Being vectors, B and H are tensors of order 1, and µ is a tensor of order 2. We will
see that they are of different type, and in fact the order of H “cancels out” with the
order of µ to give a tensor of order 1. �

(2) Physical laws do not change with different coordinate systems, hence tensors
describing them must satisfy some invariance properties. So tensors must have
invariance properties with respect to changes of bases, but their coordinates will of
course not stay invariant.

1



2 1. INTRODUCTION

Here is an example of a familiar tensor:

Example 1.2. We recall here the familiar transformation property that vectors
enjoy according to which they are an example of a contravariant tensor of first
order. We use here freely notions and properties that will be recalled in the next
chapter.

Let B := {b1, b2, b3} and B̃ := {b̃1, b̃2, b̃3} be two basis of a vector space V . A
vector v ∈ V can be written as

v = v1b1 + v2b2 + v3b3 ,

or

v = ṽ1b̃1 + ṽ2b̃2 + ṽ3b̃3 ,

where v1, v2, v3 (resp. ṽ1, ṽ2, ṽ3) are the coordinate of v with respect to the basis B
(resp. B̃).

Warning: Please keep the lower indices as lower indices and the upper ones as
upper ones. You will see later that there is a reason for it!

We use the following notation:

[v]B =

v1

v2

v3

 and [v]B̃ =

ṽ1

ṽ2

ṽ3

 ,(1.1)

and we are interested in finding the relation between the coordinates of v in the two
bases.

The vectors b̃j, j = 1, 2, 3, in the basis B̃ can be written as a linear combination
of vectors in B as follows:

b̃j = L1
jb1 + L2

jb2 + L3
jb3 ,

for some Lij ∈ R. We consider the matrix of the change of basis from B to B̃,

L := LB̃B =

L1
1 L1

2 L1
3

L2
1 L2

2 L2
3

L3
1 L3

2 L3
3


whose jth-column consists of the coordinates of the vectors b̃j with respect to the
basis B. The equalities 

b̃1 = L1
1b1 + L2

1b2 + L3
1b3

b̃2 = L1
2b1 + L2

2b2 + L3
2b3

b̃3 = L1
3b1 + L2

3b2 + L3
3b3

can simply be written as(
b̃1 b̃2 b̃3

)
=
(
b1 b2 b3

)
L .(1.2)
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(Check this symbolic equation using the rules of matrix multiplication.) Analo-
gously, writing basis vectors in a row and vector coordinates in a column, we can
write

v = v1b1 + v2b2 + v3b3 =
(
b1 b2 b3

)v1

v2

v3

(1.3)

and

v = ṽ1b̃1 + ṽ2b̃2 + ṽ3b̃3 =
(
b̃1 b̃2 b̃3

)ṽ1

ṽ2

ṽ3

 =
(
b1 b2 b3

)
L

ṽ1

ṽ2

ṽ3

 ,(1.4)

where we used (1.2) in the last equality. Comparing the expression of v in (1.3) and
in (1.4), we conclude that

L

ṽ1

ṽ2

ṽ3

 =

v1

v2

v3


or equivalently ṽ1

ṽ2

ṽ3

 = L−1

v1

v2

v3


We say that the components of a vector v are contravariant1 because they change
by L−1 when the basis changes by L. A vector v is hence a contravariant 1-tensor
or tensor of order (1, 0). �

Example 1.3 (A numerical example). Let

B = {e1, e2, e3} =


1

0
0

 ,
0

1
0

 ,
0

0
1

(1.5)

be the standard basis or R3 and let

B̃ = {b̃1, b̃2, b̃3} =


1

2
3

 ,
4

5
6

 ,
7

8
0


1In Latin contra means “contrary’, against”.
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be another basis of R3. The vector2 v =

1
1
1

 has coordinates

[v]B =

1
1
1

 and [v]B̃ =

−1
3

1
3
0

 .

Since it is easy to check that
b̃1 = 1 · e1 + 2 · e2 + 3 · e3

b̃2 = 4 · e1 + 5 · e2 + 6 · e3

b̃3 = 7 · e1 + 8 · e2 + 0 · e3

,

the matrix of the change of coordinates from B to B̃ is

L =

1 4 7
2 5 8
3 6 0

 .

It is easy to check that −1
3

1
3
0

 = L−1

1
1
1


or equivalently

L

−1
3

1
3
0

 =

1
1
1

 .

�

2The vector v here is meant here as an element in R3. As such, it is identified by three real
numbers that we write in column surrounded by square brackets. This should not be confused
with the coordinates of v with respect to a basis B, that are indicated by round parentheses as in
(1.1), while [ · ]B indicates the “operation” of taking the vector v and looking at its coordinates in
the basis B. Of course with this convention there is the – slightly confusing – fact that if B is the

basis in (1.5), then v =

1
1
1

 and [v]B =

1
1
1

.



CHAPTER 2

Review of Linear Algebra

2.1. Vector Spaces and Subspaces

Definition 2.1. A vector space V over R is a set V equipped with two operations:

(1) Vector addition: V × V → V , (v, w) 7→ v + w, and
(2) Multiplication by a scalar: R× V → V , (α, v) 7→ αv ,

satisfying the following properties:

(1) (associativity) (u+ v) + w = u+ (v + w) for every u, v, w ∈ V ;
(2) (commutativity) u+ v = v + u for every u, v ∈ V ;
(3) (existence of the zero vector) there exists 0 ∈ V such that v + 0 = v for

every v ∈ V ;
(4) (existence of additive inverse) For every v ∈ V , there exists wv ∈ V such

that v + wv = 0. The vector wv is denoted by −v.
(5) α(βv) = (αβ)v for every α, β ∈ R and every v ∈ R;
(6) 1v = v for every v ∈ V ;
(7) α(u+ w) = αu+ αv for all α ∈ R and u, v ∈ V ;
(8) (α + β)v = αu+ βv for all α, β ∈ R and v ∈ V .

An element of the vector space is called a vector.

Example 2.2 (Prototypical example). The Euclidean space Rn, n = 1, 2, 3, . . . , is
a vector space with componentwise addition and multiplication by scalars. Vectors

in Rn are denoted by v =

x1

...
xn

, with x1, . . . , xn ∈ R. �

Examples 2.3 (Other examples). (1) The set of real polynomials of degree ≤
n is a vector space, denoted by

V = R[x]n := {a0x
n + a1x

n−1 + · · ·+ an−1x+ an : aj ∈ R} .
(2) The set of real matrices of size m× n,

V = Mm×n(R) :=


a11 . . . a1m

...
...

an1 . . . anm

 : aij ∈ R

 .

(3) The space of solutions of a homogeneous linear (ordinary or partial) differ-
ential equation.

5



6 2. REVIEW OF LINEAR ALGEBRA

(4) The space {f : W → R}, where W is a vector space.
�

Exercise 2.4. Are the following vector spaces?

(1) The set V of all vectors in R3 perpendicular to the vector

1
2
3

.

(2) The set of invertible 2× 2 matrices, that is

V :=

{[
a b
c d

]
: ad− bc =6= 0

}
.

(3) The set of polynomials of degree exactly n, that is

V := {a0x
n + a1x

n−1 + · · ·+ an−1x+ an : aj ∈ R, an 6= 0} .

(4) The set V of 2× 4 matrices with last column zero, that is

V :=

{[
a b c 0
d e f 0

]
: a, b, c, d, e, f ∈ R

}
(5) The set of solutions f : R→ R of the equation f ′ = 5, that is

V := {f : R→ R : f(x) = 5x+ C, C ∈ R} .

(6) The set of all linear transformations T : R2 → R3.

Before we pass to the notion of subspace, recall that a linear combination of
vectors v1, . . . , vn ∈ V is a vector of the form α1v1 + · · ·+ αnvn for α1, . . . , αn ∈ R.

Definition 2.5. A subset W of a vector space V that is itself a vector space is a
subspace.

In other words, a subset W ⊆ V is a subspace if the following conditions are
verified:

(1) The 0 element is in V ;
(2) W is closed under addition, that is v + w ∈ W for every v, w ∈ W ;
(3) W is closed under multiplication by scalars, that is αv ∈ W for every α ∈ R

and every v ∈ W .

Condition (1) in fact follows from (2) and (3), but it is often emphasized because
it is an easy way to check that a subset is not a subspace. In any case the above
three conditions are equivalent to the following ones:

(1)’ W is nonempty;
(2)’ W is closed under linear combinations, that is αv+βw ∈ W for all α, β ∈ R

and all v, w ∈ W .
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2.2. Bases

The key yo study vector spaces is the concept of basis.

Definition 2.6. The vectors {b1, . . . , bn} ∈ V form a basis of V if:

(1) they are linearly independent and
(2) the span V .

Warning: We consider only vector spaces that have bases consisting of a finite
number of elements.

We recall here the notions of liner dependence/independence and the notion of
span.

Definition 2.7. The vectors {b1, . . . , bn} ∈ V are linearly independent if α1b1 +
· · · + αnbn = 0 implies that α1 = · · · = αn = 0. In other words if the only linear
combination that represents zero is the trivial one.

Example 2.8. The vectors

b1 =

1
2
3

 , b2 =

4
5
6

 , b3 =

7
8
0


are linearly independent in R3. In fact,

µ1b1 + µ2b2 + µ3b3 = 0⇐⇒


µ1 + 4µ2 + 7µ3 = 0

2µ1 + 5µ2 + 8µ30

3µ1 + 6µ2 = 0

⇐⇒ . . .⇐⇒ µ1 = µ2 = µ3 = 0 .

(If you are unsure how to fill in the dots look at Example 2.13.) �

Example 2.9. The vectors

b1 =

1
2
3

 , b2 =

4
5
6

 , b3 =

7
8
9


are linearly dependent in R3. In fact,

µ1b1 + µ2b2 + µ3b3 = 0⇐⇒


µ1 + 4µ2 + 7µ3 = 0

2µ1 + 5µ2 + 8µ30

3µ1 + 6µ2 + 9µ3 = 0

⇐⇒ . . .⇐⇒
{
µ1 = µ2

µ2 = −2µ3 ,

so

b1 − 2b2 + b3 = 0

and b1, b2, b3 are not linearly independent. For example b1 = 2b2− b3 is a non-trivial
linear relation between the vectors b1, b2 and b3. �

Definition 2.10. The vectors {b1, . . . , bn} ∈ V span V if every vector v ∈ V can
be written as a linear combination v = α1b1 + · · ·+ αnbn, for some α1, . . . , αn ∈ R.
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Example 2.11. The vectors in Example 2.8 span R3, while the vectors in Exam-
ple 2.9 do not span R3. To see this, we recall the following facts about bases. �

Facts about bases: Let V be a vector space:

(1) All bases of V have the same number of elements. This number is called
the dimension of V and indicated with dimV .

(2) If B := {b1, . . . , bn} form a basis of V , there is a unique way of writing v as
a linear combination

v = v1b1 + . . . vnbn

of elements in B. We denote by

[v]B =

v
1

...
vn


the coordinate vector of v with respect to B.

(3) If we know that dimV = n, then:
(a) More than n vectors in V must be linearly dependent;
(b) Fewer than n vectors in V cannot span V ;
(c) Any n linearly independent vectors span V ;
(d) Any n vectors that span V must be linearly independent;
(e) If k vectors span V , then k ≥ n and some subset of those k vectors

must be a basis of V ;
(f) If a set of m vectors is linearly independent, then m ≤ n and we can

always complete the set to form a basis of V .

Example 2.12. The vectors in Example 2.8 form a basis of R3 since they are linearly
independent and they are exactly as many as the dimension of R3. �

Example 2.13 (Gauss-Jordan elimination). We are going to compute here the co-

ordinates of v =

1
1
1

 with respect to the basis B = {b1, b2, b3} in Example 2.8. The

seeked coordinates [v]B =

v
1

...
vn

 must satisfy the equation

v1

1
2
3

+ v2

4
5
6

+ v3

7
8
0

 =

1
1
1

 ,
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so to find them we have to solve the following system of linear equations:
v1 + 4v2 + 7v3 = 1

2v1 + 5v2 + 8v3 = 1

3v1 + 6v2 = 1

or, equivalently, reduced the following augmented matrix1 4 7 1
2 5 8 1
3 6 0 1


in echelon form using the Gauss–Jordan elimination method. We are going to per-
form both calculations in parallel, which will also point out that they are indeed
seemingly different incarnation of the same method.

By multiplying the first equation/row by 2 (reps. 3) and subtracting it from the
second (reps. third) equation/row we obtain

v1 + 4v2 + 7v3 = 1

− 3v2 − 6v3 = −1

− 6v2 − 21v3 = −2

!

1 4 7 1
0 −3 −6 −1
0 −6 −21 −2

 .

By multiplying the second equation/row by −1/3 and by adding to the first (resp.
third) equation/row the second equation/row multiplied by−4/3 (resp. 2) we obtain

v1 − v3 = 1

v2 + 2v3 =
1

3
− 9v3 = 0

!

1 0 −1 1
0 1 2 1

3
0 0 −9 0

 .

The last equation/row shows that v3 = 0, hence the above becomes
v1 = 1

v2 =
1

3
v3 = 0

!

1 0 0 1
0 1 0 1

3
0 0 1 0

 .

�

Exercise 2.14. Let V be the vector space consisting of all 2×2 matrices with trace
zero, namely

V :=

{[
a b
c d

]
: a, b, c, d ∈ R and a+ d = 0

}
.
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(1) Show that

B :=

{[
1 0
0 −1

]
︸ ︷︷ ︸

b1

,

[
0 1
0 0

]
︸ ︷︷ ︸

b2

,

[
0 0
1 0

]
︸ ︷︷ ︸

b3

}

is a basis of V .
(2) Show that

B̃ :=

{[
1 0
0 −1

]
︸ ︷︷ ︸

b̃1

,

[
0 −1
1 0

]
︸ ︷︷ ︸

b̃2

,

[
0 1
1 0

]
︸ ︷︷ ︸

b̃3

}

is another basis of V .
(3) Compute the coordinates of

v =

[
2 1
7 −2

]
with respect to B and with respect to B̃.

2.3. The Einstein convention

We start by setting a notation that will turn out to be useful later on. Recall
that if B = {b1, b2, b3} is a basis of a vector space V , any vector v ∈ V can be written
as

v = v1b1 + v2b2 + v3b3(2.1)

for appropriate v1, v2, v3 ∈ R.

Notation. From now on, expressions like the one in (2.1) will be written as

v = ((((
((((

((hhhhhhhhhhv1b1 + v2b2 + v3b3 = vjbj .(2.2)

That is, from now on when an index appear twice (that is, once as a subscript and
once as a superscript) in a term, we know that it implies that there is a summation
over all possible values of that index. The summation symbol will not be displayed.

Analogously, indices that are not repeated in expressions like aijx
kyj are free

indices not subject to summation.

Examples 2.15. For indices ranging over {1, 2, 3}, i.e. n = 3:

(1) The expression aijx
iyk means

aijx
iyk = a1jx

1yk + a2jx
2yk + a3jx

3yk ,

and could be called Rk
j (meaning that Rk

j and aijx
iyk both depend on the

indices j and k).
(2) Likewise,

aijx
kyj = ai1x

ky1 + ai2x
ky2 + ai3x

ky3 =: Qk
i .
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(3) Further

aijx
iyj = a11x

1y1 + a12x
1y2 + a13x

1y3

+ a21x
2y1 + a22x

2y2 + a23x
2y3

+ a31x
3y1 + a32x

3y2 + a33x
3y3 =: P

(4) An expression like

AiBj
k`C

` =: Dij
k

makes sense. Here the indices i, j, k are free (i.e. free to range in {1, 2, . . . , n})
and ` is a summation index.

(5) On the other hand an expression like

EijF`
jkG` = Hjk

i

does not make sense because the expression on the left has only two free
indices, i and k, while j and ` are summation indices and neither of them
can appear on the right hand side.

Notation. Since vjbj denotes a sum, the generic term of a sum will be denoted
with capital letters. For example we write vIbI and the above expressions could
have been written as

(1)

aijx
iyk =

3∑
i=1

aIJx
IyK = a1jx

1yk + a2jx
2yk + a3jx

3yk ,

(2)

aijx
kyj =

3∑
j=1

aIJx
KyJ = ai1x

ky1 + ai2x
ky2 + ai3x

ky3 .

(3)

aijx
iyj =

3∑
j=1

3∑
i=1

aIJx
IyJ =

= a11x
1y1 + a12x

1y2 + a13x
1y3

+ a21x
2y1 + a22x

2y2 + a23x
2y3

+ a31x
3y1 + a32x

3y2 + a33x
3y3 .

�
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2.3.1. Change of bases, revisited. Let B and B̃ be two bases of a vector
space V and let

L := LB̃B =

L
1
1 . . . L1

n
...

...
Ln1 . . . Lnn

(2.3)

be the matrix of the change of basis from B to B̃. [Recall that the entries of the

j-th column of L are the coordinates of the b̃js with respect to the basis B.] With
the Einstein convention we can write

b̃j = Lijbi , .(2.4)

or, equivalently (
b̃1 . . . b̃n

)
=
(
b1 . . . bn

)
L .

If Λ = L−1 denotes the matrix of the change of basis from B̃ to B, then(
b1 . . . bn

)
=
(
b̃1 . . . b̃n

)
Λ .

Equivalently, this can be written in compact form using the Einstein notation as

bj = Λi
j b̃i .

Analogously, the corresponding relations for the vector coordinates are
v1

...
vi

...
vn

 =


L1

1 . . . L1
n

...
...

Li1 . . . Lin
...

...
Ln1 . . . Lnn


ṽ

1

...
ṽn

 and


ṽ1

...
ṽi

...
ṽn

 =


Λ1

1 . . . Λ1
n

...
...

Λi
1 . . . Λi

n
...

...
Λn

1 . . . Λn
n


v

1

...
vn


and these can be written with the Einstein convention respectively as

vi = ((((
((((

((hhhhhhhhhhLi1ṽ
1 + · · ·+ Linṽ

n = Lij ṽ
j and ṽi = ((((

(((
(((hhhhhhhhhhΛi

1v
1 + · · ·+ Λi

nv
n = Λi

jv
j ,(2.5)

or, in matrix notation,

[v]B = LB̃B[v]B̃ and [v]B̃ = (LB̃B)−1[v]B = LBB̃[v]B .

Example 2.16. We consider the following two bases of R2

B =

{ [
1
0

]
︸︷︷︸
b1

,

[
2
1

]
︸︷︷︸
b2

}

B̃ =

{ [
3
1

]
︸︷︷︸
b̃1

,

[
−1
−1

]
︸ ︷︷ ︸
b̃2

}(2.6)
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and we look for the matrix of the change of basis. Namely we look for a matrix L
such that [

3 −1
1 −1

]
=
(
b̃1 b̃2

)
=
(
b1 b2

)
L =

[
1 2
0 1

]
L .

There are two alternative ways of finding L:

(1) With matrix inversion: Recall that[
a b
c d

]−1

=
1

D

[
d −b
−c a

]
,(2.7)

where D = det

([
a b
c d

])
. Thus

L =

[
1 2
0 1

]−1 [
3 −1
1 −1

]
=

[
1 −2
0 1

] [
3 −1
1 −1

]
=

[
1 1
1 −1

]
.

(2) With the Gauss-Jordan elimination:[
1 2 3 −1
0 1 1 −1

]
!

[
1 0 1 1
0 1 1 −1

]
�

2.3.2. The Kronecker delta symbol.

Notation. The Kronecker delta symbol δij is defined as

δij :=

{
1 if i = j

0 if i 6= j .
(2.8)

Examples 2.17. If L is a matrix, the (i, j)-entry of L is the coefficient in the i-th
row and j-th column, and is denoted by Lij.

(1) The n× n identity matrix

I =

1 . . . 0
...

. . .
...

0 . . . 1


has (i, j)-entry equal to δij.

(2) Let L and Λ be two square matrices. The (i, j)-th entry of the product ΛL

ΛL =


Λ1

1 . . . Λ1
n

...
...

Λi
1 . . . Λi

n
...

...
Λn

1 . . . Λn
n


L

1
1 . . . L1

j . . . L1
n

...
...

...
Ln1 . . . Lnj . . . Lnn


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equals the dot product of the i-th row and j-th column,

(
Λi

1 . . . Λi
n

)
·

L
1
j
...
Lnj

 = Λi
1L

1
j + · · ·+ Λi

nL
n
j ,

or, using the Einstein convention,

Λi
kL

k
j

Notice that since in general ΛL 6= LΛ, it follows that

Λi
kL

k
j 6= LikΛ

k
j = Λk

jL
i
k .

On the other hand, if Λ = L−1, that is ΛL = LΛ = I, then we can write

Λi
kL

k
j = δij = LikΛ

k
j .

�

Remark 2.18. Using the Kronecker delta symbol we can check that the notations
in (2.5) are all consistent. In fact, from (2.2) we should have

vibi = v = ṽib̃i ,(2.9)

and, in fact, using (2.5),

ṽib̃i = Λi
jv
jLki bk = δkj v

jbk = vjbj ,

where we used that Λi
jL

k
i = δkj since Λ = L−1.

Two words of warning:

• The two expressions vjbj and vkbk are identical, as the indices j and k are
dummy indices.
• When multiplying two different expressions in Einstein notation, you should

be careful to distinguish by different letters different summation indices. For
example, if ṽi = Λi

jv
j and b̃i = Lji bj, in order to perform the multiplication

ṽib̃i we have to make sure to replace one of the dummy indices in the
two expressions. So, for example, we can write b̃i = Lki bk, so that ṽib̃i =
Λi
jv
jLki bk.

2.4. Linear Transformations

Let T : V → V be a linear transformation, that is a transformation that satisfies
the property

T (αv + βw) = αT (v) + βT (w) ,

for all α, β ∈ R and all v, w ∈ V . Once we choose a basis of V , the transformation
T is represented by a matrix A with respect to that basis, and that matrix gives
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the effect of T on the coordinate vectors. In other words, if T (v) is the effect of the
transformation T on the vector v, with respect a basis B we have that

[v]B 7−→ [T (v)]B = A[v]B .(2.10)

If B̃ is another basis, we have also

[v]B̃ 7−→ [T (v)]B̃ = Ã[v]B̃ ,(2.11)

where now Ã is the matrix of the transformation T with respect to the basis B̃.

We want to find now the relation between A and Ã. Let L := LB̃B be the matrix

of the change of basis from B to B̃. Then, for any v ∈ V ,

[v]B̃ = L−1[v]B .(2.12)

In particular the above equation holds for the vector T (v), that is

[T (v)]B̃ = L−1[T (v)]B .(2.13)

Using (2.12), (2.11), (2.13) and (2.10) in this order, we have

ÃL−1[v]B = Ã[v]B̃ = [T (v)]B̃ = L−1[T (v)]B = L−1A[v]B

for every vector v ∈ V . If follows that ÃL−1 = L−1A or equivalently

Ã = L−1AL ,(2.14)

which in Einstein notation reads

Ãij = Λi
kA

k
mL

m
j .

We say that the linear transformation T is a tensor of type (1, 1).

Example 2.19. Let V = R2 and let B and B̃ be the bases in Example 2.16. The
matrices corresponding to the change of coordinates are

L := LB̃B

[
1 1
1 −1

]
and L−1 =

1

−2

[
−1 −1
−1 1

]
=

[
1
2

1
2

1
2
−1

2

]
,

where in the last equality we used the formula for the inverse of a matrix in (2.7).
Let T : R2 → R2 be the linear transformation that in the basis B takes the form

A =

[
1 3
2 4

]
.

Then according to (2.14) the matrix Ã of the linear transformation T with respect

to the basis B̃ is

Ã = L−1AL =

[
1
2

1
2

1
2
−1

2

] [
1 3
2 4

] [
1 1
1 −1

]
=

[
5 −2
−1 0

]
.

�
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Example 2.20. We now look for the standard matrix of T , that is the matrix M
that represents T with respect to the standard basis of R2, which we denote by

E :=

{ [
1
0

]
︸︷︷︸
e1

,

[
0
1

]
︸︷︷︸
e2

}
.

We want to apply again the formula (2.14) and hence we first need to find the matrix
S := LBE of the change of basis from E to B. Recall that the columns of S are the
coordinates of bj with respect to the basis E , that is

S =

[
1 2
0 1

]
.

According to (2.14),

A = S−1MS ,

from which, using again (2.7), we obtain

M = SAS−1 =

[
1 2
0 1

] [
1 3
2 4

] [
1 −2
0 1

]
=

[
1 2
0 1

] [
1 1
2 0

]
=

[
5 1
2 0

]
.

�

Example 2.21. Let T : R3 → R3 be the orthogonal projection onto the plane P of
equation

2x+ y − z = 0 .

This means that the transformation T is characterized by the fact that

– it does not change vectors in the plane P , and
– it takes to zero vectors perpendicular to P .

We want to find the standard matrix for T .

Idea: First compute the matrix of T with respect to a basis B of R3 well adapted
to the problem, then use (2.14) after having found the matrix LBE of the change of
basis.

To this purpose, we choose two linearly independent vectors in the plane P and
a third vector perpendicular to P . For instance, we set

B :=

{1
0
2


︸︷︷︸
b1

,

0
1
1


︸︷︷︸
b2

,

 2
1
−1


︸ ︷︷ ︸

b3

}
,

where the coordinates of b1 and b2 satisfy the equation of the plane, while the
coordinates of b3 are the coefficients of the equation describing P . Let E be the
standard basis of R3.
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Since

T (b1) = b1, T (b2) = b2 and T (b3) = 0 ,

the matrix of T with respect to B is

A =

1 0 0
0 1 0
0 0 0

 ,(2.15)

where we recall that the j-th column are the coordinates [T (bj)]B of the vector T (bj)
with respect to the basis B.

The matrix of the change of basis from E to B is

L =

1 0 2
0 1 1
2 1 −1

 ,

hence, by Gauss–Jordan elimination,

L−1 =

 1
3
−1

3
1
3

−1
3

5
6

1
6

1
3

1
6
−1

6

 .

Therefore

M = LAL−1 = · · · =

 1
3
−1

3
1
3

−1
3

5
6

1
6

1
3

1
6

5
6

 .

�

Example 2.22. Let V := R[x]2 be the vector space of polynomials of degree ≤ 2,
and let T : R[x]2 → R[x]2 be the linear transformation given by differentiating a
polynomial and then multiplying the derivative by x,

T (p(x)) := xp′(x) ,

so that T (a+ bx+ cx2) = x(b+ 2cx) = bx+ 2cx2. Let

B := {1, x, x2} and B̃ := {x, x− 1, x2 − 1}
be two bases of R[x]2. Since

T (1) = 0 = 0 · 1 + 0 · x+ 0 · x2

T (x) = x = 0 · 1 + 1 · x+ 0 · x2

T (x2) = 2x2 = 0 · 1 + 0 · x+ 2 · x2

and

T (x) = x = 1 · x+ 0 · (x− 1) + 0 · (x2 − 1)

T (x− 1) = x = 1 · x+ 0 · (x− 1) + 0 · (x2 − 1)

T (x2 − 1) = 2x2 = 2 · x− 2 · (x− 1) + 2 · (x2 − 1) ,
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then

A =

0 0 0
0 1 0
0 0 2

 and Ã =

1 1 2
0 0 −2
0 0 2

 .

One can check that L =

0 −1 −1
1 1 0
0 0 1

 and that indeed AL = LÃ or, equivalently

Ã = L−1AL. �

2.4.1. Similar matrices. The above calculations can be summarized by the
commutativity of the following diagram. Here the vertical arrows correspond to the

operation of the change of basis from B to B̃ (recall that the coordinate vectors are
contravariant tensors, that is they transform as [v]B̃ = L−1[v]B) and the horizontal
arrows to the operation of applying the transformation T in the two different basis

[v]B
� A //

_

L−1

��

[T (v)]B_

L−1

��
[v]B̃

�

Ã

// [T (v)]B̃ .

Saying the the diagram is commutative is exactly the same thing as saying that if one
starts from the upper left hand corner, reaching the lower right hand corner following
either one of the two paths has exactly the same effect. In other words, changing
coordinates first then applying the transformation T yields exactly the same affect
as applying first the transformation T and then the change of coordinates, that is

AL−1 = L−1M

or equivalently

A = L−1ML .

In this case we say that A and Ã are similar matrices. This means that A and

Ã represent the same transformation with respect to different bases.

Definition 2.23. We say that two matrices A and Ã are similar if there exists and

invertible matrix L such that Ã = L−1AL.

Examples 2.24. (1) The matrices in Example 2.19 and Example 2.20

A =

[
1 3
2 4

]
M =

[
5 1
2 0

]
and Ã =

[
5 −2
−1 0

]
are similar.

(2) The matrices A in (1) and A′ =

[
1 2
2 4

]
are not similar. In fact, A is

invertible, as detA = −2 6= 0, while detA′ = 0, so that A′ is not invertible.
�
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We collect here few facts about similar matrices. Recall that the eigenvalues
of a matrix A are the roots of the characteristic polynomial

pA(λ) := det(A− λI) .

Moreover

(1) the determinant of a matrix is the product of its eigenvalues, and
(2) the trace of a matrix is the sum of its eigenvalues.

Let us assume that A and Ã are similar matrices, that is Ã = L−1AL for some
invertible matrix L. Then

pÃ(λ) = det(Ã− λI) = det(L−1AL− λL−1IL)

= det(L−1(A− λI)L)

= ���
��(detL−1) det(A− λI)���

�(detL) = pA(λ) ,

(2.16)

which means that any two similar matrices have the same characteristic polynomial.

Facts about similar matrices: From (2.16) if follows immediately that if the

matrices A and Ã are similar, then:

• A and Ã have the same size;
• the eigenvalues of A (as well as their multiplicity) are the same as those of

Ã;

• detA = det Ã;

• trA = tr Ã;

• A is invertible if and only if Ã is invertible.

2.5. Eigenbases

The possibility of choosing different bases is very important and often simplifies
the calculations. Example 2.21 is such an example, where we choose an appropriate
basis according to the specific problem. Other times a basis can be chosen according
to the symmetries and, completely at the opposite side, sometime there is just not
a basis that is a preferred one. One basis that is particularly important, when it
exists, is an eigenbasis with respect to some linear transformation A of V .

Recall that an eigenvector of a linear transformation A corresponding to an
eigenvalue λ is a non-zero vector v ∈ Eλ := ker(A − λI). An eigenbasis of a
vector space V is a basis consisting of eigenvectors of a linear transformation A of
V . The point of having an eigenbasis is that, with respect to this eigenbasis, the
linear transformation is as simple as possible, that is is as close as possible to be
diagonal. This diagonal matrix similar to A is called the Jordan canonical form
of A.

Given a linear transformation T : V → V , in order to find an eigenbasis of T ,
we need to perform the following steps:

(1) Compute the eigenvalues
(2) Compute the eigenspaces
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(3) Find a eigenbasis.

We will do this in the following example.

Example 2.25. Let T : R2 → R2 be the linear transformation given by the matrix

A =

[
3 −4
−4 −3

]
with respect to the standard basis of R2.

(1) The eigenvalues are the roots of the characteristic polynomial pλ(A). Since

pA(λ) = det(A− λI) = det

[
3− λ −4
−4 −3− λ

]
= (3− λ)(−3− λ)− 16 = λ2 − 25 = (λ− 5)(λ+ 5) ,

hence λ = ±5 are the eigenvalues of A.
(2) If λ is an eigenvalue of A, the eigenspace corresponding to λ is given by

Eλ = ker(A− λI). Note that

v ∈ Eλ ⇐⇒ Av = λv .

With our choice of A and with the resulting eigenvalues, we have

E5 = ker(A− 5I) = ker

[
−2 −4
−4 −8

]
= span

[
2
−1

]
E−5 = ker(A+ 5I) = ker

[
−8 −4
−4 −2

]
= span

[
1
2

]
.

(3) The following is an eigenbasis of R2

B̃ =

{
b̃1 =

[
2
1

]
, b̃2 =

[
1
2

]}
and

T (b̃1) = 5b̃1 = 5 · b̃1 + 0 · b̃2

T (b̃2) = −5b̃2 = 0 · b̃1 − 5 · b̃2 ,

so that A =

[
5 0
0 −5

]
.

Notice that the eigenspace E5 consists of vectors on the line x+ 2y = 0
and these vectors get scaled by the transformation T by a factor of 5. On
the other hand, the eigenspace E−5 consists of vectors perpendicular to the
line x + 2y = 0 and these vectors get flipped by the transformation T and
then also scaled by a factor of 5. Hence T is just the reflection across the
line x+ 2y = 0 followed by multiplication by 5.

�

Summarizing, in Examples 2.19 and 2.20 we looked at how the matrix of a
transformation changes with respect to two different basis that we were given. In
Example 2.21 we looked for a particular basis appropriate to the transformation at



2.5. EIGENBASES 21

hand. In Example 2.25 we looked for an eigenbasis with respect to the given transfor-
mation. Example 2.21 in this respect fits into the same framework as Example 2.25,
but the orthogonal projection has a zero eigenvalue (see (2.15)).





CHAPTER 3

Multilinear Forms

3.1. Linear Forms

3.1.1. Definition, Examples, Dual and Dual Basis.

Definition 3.1. Let V be a vector space. A linear form on V is a map α : V → R
such that for every a, b ∈ R and for every v, w ∈ V

α(av + bw) = aα(v) + bα(w) .

Alternative terminologies for “linear form” are tensor of type (0, 1), 1-form,
linear functional and covector.

Exercise 3.2. If V = R3 , which of the following is a linear form?

(1) α(x, y, z) := xy + z;
(2) α(x, y, z) := x+ y + z + 1;
(3) α(x, y, z) := πx− 7

2
z.

Exercise 3.3. If V is the infinite dimensional vector space of continuous functions
f : R→ R, which of the following is a linear form?

(1) α(f) := f(7)− f(0);

(2) α(f) :=
∫ 33

0
exf(x)dx;

(3) α(f) := ef(x).

Example 3.4. [Coordinate forms] This is the most important example of linear
form. Let B := {b1, . . . , bn} be a basis of V and let v = vibi ∈ V be a generic vector.
Define βi : V → R by

βi(v) := vi ,(3.1)

that is βi will extract the i-th coordinate of a vector with respect to the basis B.
The linear form βi is called coordinate form. Notice that

βi(bj) = δij ,(3.2)

since the i-th coordinate of the basis vector bj with respect to the basis B is equal
to 1 if i = j and 0 otherwise. �

23
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Example 3.5. Let V = R3 and let E be its standard basis. The three coordinate
forms are defined by

β1

xy
z

 := x , β2

xy
z

 := y , β3

xy
z

 := z .

�

Example 3.6. Let V = R2 and let B :=

{ [
1
1

]
︸︷︷︸
b1

,

[
1
−1

]
︸ ︷︷ ︸
b2

}
. We want to describe the

elements of B∗ := {β1, β2}, in other words we want to find

β1(v) and β2(v)

for a generic vector v ∈ V .
To this purpose we need to find [v]B. Recall that if E denotes the standard basis

of R2 and L := LBE the matrix of the change of coordinate from E to B, then

[v]B = L−1[v]E = L−1

(
v1

v2

)
.

Since

L =

[
1 1
1 −1

]
and hence

L−1 =
1

2

[
1 1
1 −1

]
,

then

[v]B =

(
1
2
(v1 + v2)

1
2
(v1 − v2)

)
.

Thus, according to (3.1), we deduce that

β1(v) =
1

2
(v1 + v2) and β2(v) =

1

2
(v1 − v2) .

�

Let us define

V ∗ := {all linear forms α : V → R} .

Exercise 3.7. Check that V ∗ is a vector space whose null vector is the linear form
identically equal to zero.

We called V ∗ the dual of V .
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Proposition 3.8. Let B := {b1, . . . , bn} be a basis of V and β1, . . . , βn are the
corresponding coordinate forms. Then B∗ := {β1, . . . , βn} is a basis of V ∗. As a
consequence

dimV = dimV ∗ .

Proof. According to Definition 2.6 , we need to check that the linear forms in
B∗

(1) span V and
(2) are linearly independent.

(1) To check that B∗ spans V we need to verify that any α ∈ V ∗ is a linear combi-
nation of β1, . . . , βn, that is that

α = αiβ
i(3.3)

for some αi ∈ R. Because of (3.2), if we apply both sides of (3.3) to the j-th basis
vector bi, we obtain

α(bj) = αiβ
i(bj) = αiδ

i
j = αj ,(3.4)

which identifies the coefficients in (3.3).
Now let v = vibi ∈ V be an arbitrary vector. Then

α(v) = α(vibi) = viα(bi) = viαi ,

where the second equality follows form the definition of linear form and the third
from (3.4).

On the other hand

αiβ
i(v) = αiβ

i(vjbj) = αiv
jβi(bj) = αiv

jδij = αiv
i .

Thus (3.3) is verified.

(2) We need to check that the only linear combination of β1, . . . , βn that gives
the zero linear form is the trivial linear combination. Let ciβ

i = 0 be a linear
combination of the βi. Then for every basis vector bj, with j = 1, . . . , n,

0 = (ciβ
i)(bj) = ci(β

i(bj)) = ciδ
i
j = cj ,

thus showing the linear independence. �

The basis B∗ of V ∗ is called the basis of V dual to B. We emphasize that the
coordinates (or components) of a linear form α with respect to B∗ are exactly the
values of α on the elements of B,

αi = α(bi) .

Example 3.9. Let V = R[x]2 be the vector space of polynomials of degree ≤ 2, let
α : V → R be the linear form given by

α(p(x)) := p(2)− p′(2)(3.5)

and let B := {1, x, x2} be a basis of V . We want to:
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(1) find the components of α with respect to B∗;
(2) describe the basis B∗ = {β1, β2, β3};

(1) Since

α1 = α(b1) = α(1) = 1− 0 = 1

α2 = α(b2) = α(x) = 2− 1 = 1

α3 = α(b3) = α(x2) = 4− 4 = 0 ,

then

[α]B∗ =
(
1 1 0

)
.(3.6)

(2) The generic element p(x) ∈ R[x]2 written as combination of basis elements 1, x
and x2 is

p(x) = a+ bx+ cx2 .

Hence B∗ = {β1, β2, β3}, is given by

β1(a+ bx+ cx2) = a

β2(a+ bx+ cx2) = b

β3(a+ bx+ cx2) = c .

(3.7)

�

Remark 3.10. Note that it does not make sense to talk about a “dual basis” of V ∗,
as for every basis B of V there is going to be a basis B∗ of V ∗ dual to the basis B.
In the next section we are going to see how the dual basis transform with a change
of basis.

3.1.2. Transformation of Linear Forms under a Change of Basis. We
want to study how a linear form α : V → R behaves with respect to a change a
basis in V . To this purpose, let

B := {b1, . . . , bn} and B̃ := {b̃1, . . . , b̃n}
be two bases of V and let

B∗ := {β1, . . . , βn} and B̃∗ := {β̃1, . . . , β̃n}
the corresponding dual bases. Let

[α]B∗ =
(
α1 . . . αn

)
and [α]B̃∗ =

(
α̃1 . . . α̃n

)
be the coordinate vectors of α with respect to B∗ and B̃∗, that is

α(bi) = αi and α(b̃i) = α̃i .

Let L := LB̃B be the matrix of the change of basis in (2.3)

b̃j = Lijbi .
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Then

α̃j = α(b̃j) = α(Lijbi) = Lijα(bi) = Lijαi = αiL
i
j ,(3.8)

so that

α̃j = αiL
i
j .(3.9)

Exercise 3.11. Verify that (3.9) is equivalent to saying that

[α]B̃∗ = [α]B∗L .(3.10)

Note that we have exchanged the order of αi and Lij in the last equation in (3.8) to
respect the order in which the matrix multiplication in (3.10) has to be performed.
This was possible because both αi and Lij are real numbers.

We say that the component of a linear form α are covariant1 because they
change by L when the basis changes by L. A linear form α is hence a covariant
tensor or a tensor of type (1, 0).

Example 3.12. We continue with Example 3.9. We consider the bases as in Exam-
ple 2.22, that is

B := {1, x, x2} and B̃ := {x, x− 1, x2 − 1}

and the linear form α : V → R as in (3.5). We will:

(1) find the components of α with respect to B∗;
(2) describe the basis B∗ = {β1, β2, β3};
(3) find the components of α with respect to B̃∗;
(4) describe the basis B̃∗ = {β̃1, β̃2, β̃3};
(5) find the matrix of change of basis L := LB̃B and compute Λ = L−1;
(6) check the covariance of α;
(7) check the contravariance of B∗.

(1) This is done in (3.6).

(2) This is done in (3.7).

(3) We proceed as in (3.6). Namely,

α1 = α(b̃1) = α(x) = 2− 1 = 1

α2 = α(b̃2) = α(x− 1) = 1− 1 = 0

α3 = α(b̃3) = α(x2 − 1) = 3− 4 = −1 ,

so that

[α]B̃∗ =
(
1 0 −1

)
.

1“co” is a prefix that in Latin means “joint”.
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(4) Since β̃i(v) = ṽi, to proceed as in (3.7) we first need to write the generic polyno-

mial p(x) = a+ bx+ cx2 as a linear combination of elements in B̃, namely we need

to find ã, b̃ and c̃ such that

p(x) = a+ bx+ cx2 = ãx+ b̃(x− 1) + c̃(x2 − 1) .

By multiplying and collecting the terms, we obtain that
− b̃− c̃ = a

ã+ b̃ = b

c̃ = c

that is


ã = a+ b+ c

b̃ = −a− c
c̃ = c .

Hence

p(x) = a+ bx+ cx2 = (a+ b+ c)x+ (−a− c)(x− 1) + c(x2 − 1) ,

so that it follows that

β̃1(p(x)) = a+ b+ c

β̃2(p(x)) = −a− c
β̃3(p(x)) = c ,

(5) The matrix of the change of bases is given by

L := LB̃B =

0 −1 −1
1 1 0
0 0 1

 ,

since for example b̃3 can be written as a linear combination with respect to B as
b̃3 = x2 − 1 = −1b1 + 0b2 + 1b3, and hence its coordinates form the third column of
L.

To compute Λ = L−1 we can use the Gauss–Jordan elimination process0 −1 −1 1 0 0
1 1 0 0 1 0
0 0 1 0 0 1

 ! . . . !

1 0 0 1 1 1
0 1 0 −1 0 −1
0 0 1 0 0 1


Hence

Λ =

 1 1 1
−1 0 −1
0 0 1


(6) The linear form α is covariant since

(
α̃1 α̃2 α̃3

)
=
(
1 0 −1

)
=
(
1 1 0

)0 −1 −1
1 1 0
0 0 1

 =
(
α1 α2 α3

)
L

(7) The dual basis B∗ is contravariant since
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Table 1. Covariance and Contravariance

The covariance The contravariace
of a tensor of a tensor

is characterized by lower indices upper indices
vectors are indicated as row vectors column vectors
the tensor transforms w.r.t.

a change of basis B → B̃ by
multiplication by L on the right L−1 on the left
(for later use) if a tensor
is of type (p, q) (p, q) (p, q)

β̃1

β̃2

β̃3

 = Λ

β1

β2

β3

 ,

as it can be verified by looking at an arbitrary vector p(x) = a+ bx+ cx2a+ b+ c
−a− c
c

 =

 1 1 1
−1 0 −1
0 0 1

ab
c

 .

�

In fact, the statement in Example 3.9(7) holds in general, namely:

Claim 3.13. Dual bases are contravariant.

Proof. We will check that when bases B and B̃ are related by

b̃j = Lijbi

the corresponding dual bases B∗ and B̃∗ of V ∗ are related by

β̃j = Λj
iβ

i .(3.11)

It is enough to check that the Λj
iβ

i are dual of the Lijbi. In fact, since ΛL = I, then

(Λk
`β

`)(Lijbi) = Λk
`L

i
jβ

`(bi) = Λk
`L

i
jδ
`
i = Λk

iL
i
j = δkj = βj(b̃j) .

�

In Table 1 you will find a summary of the properties that characterize covariance
and contravariance, while in Table 2 you can find a summary of the properties that
bases and dual bases, coordinate vectors and coordinates of linear forms satisfy
with respect to a change of coordinates and hence whether they are covariant or
contravariant.
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Table 2. Summary

V real vector space V ∗ = {α : V → R} =linear forms
with dimV = n = dual vector space

B := {b1, . . . , bn} B∗ = {β1, . . . , βn}
basis of V dual basis of V ∗ w.r.t B

B̃ := {b̃1, . . . , b̃n} B̃∗ = {β̃1, . . . , β̃n}
another basis of V dual basis of V ∗ w.r.t B̃∗

L := LB̃B =matrix of the change Λ = L−1 =matrix of the change

of basis from B to B̃ of basis from B̃ to B

b̃j = Lijbi i.e.
(
b̃1 . . . b̃n

)
=
(
b1 . . . bn

)
L β̃i = Λi

jβ
j i.e.

β̃
1

...

β̃n

 = L−1

β
1

...
βn


covariance of a basis contravariance of the dual basis
If v is any vector in V If α is any linear form in V ∗

then v = vibi = ṽib̃i then α = αjβ
j = α̃jβ̃

j

where where

ṽi = Λi
jv
j i.e. [v]B̃ = L−1[v]B α̃j = Lijαi i.e. [α]B̃ = [α]BL

or

ṽ
1

...
ṽn

 = L−1

v
1

...
vn

 or
(
α̃1 . . . α̃n

)
=
(
α1 . . . αn

)
L

contravariance of the coordinate vectors covariance of linear forms

3.2. Bilinear Forms

3.2.1. Definition, Examples and Basis.

Definition 3.14. A bilinear form on V is a function ϕ : V ×V → R that is linear
in each variable, that is

ϕ(u, λv + µw) = λϕ(u, v) + µϕ(u,w)

ϕ(λv + µw, u) = λϕ(v, u) + µϕ(w, u) ,

for every λ, µ ∈ R and for every u, v, w ∈ V .

Examples 3.15. Let V = R3.

(1) The scalar product

ϕ(v, w) := v • w = |v| |w| cos θ ,

where θ is the angle between v and w is a bilinear form. It can be defined
also for n > 3.
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(2) Choose a vector u ∈ R3 and for any two vectors v, w ∈ R3, denote by v×w
their cross product. The scalar triple product

ϕu(v, w) := u • (v × w) = det

uv
w

(3.12)

is a bilinear form in v and w, where

uv
w

 denotes the matrix with rows u, v

and w. The quantity ϕu(v, w) calculates the signed volume of the paral-
lelepiped spanned by u, v, w: the sign of ϕu(v, w) depends on the orientation
of the triple u, v, w.

Since the cross product is defined only in R3, contrary to the scalar
product, the scalar triple product cannot be defined in Rn with n > 3
(although there is a formula for an n dimensional parallelediped involving
some “generalization” of it).

�

Exercise 3.16. Verify the equality in (3.12) using the Leibniz formula for the de-
terminant of a 3× 3 matrix. Recall that

det

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =a11a22a33 − a11a23a32 + a12a23a31

−a12a21a33 + a13a21a32 − a13a22a31

=
∑
σ∈S3

sign(σ)a1σ(1)a2σ(2)a3σ(3) ,

where

σ = (σ(1), σ(2), σ(3)) ∈ S3 := {permutations of 3 elements}
= {(1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 1, 2), (3, 2, 1)} .

Examples 3.17. Let V = R[x]2.

(1) Let p, q ∈ R[x]2. The function ϕ(p, q) := p(π)q(33) is a bilinear form.
(2) Likewise,

ϕ(p, q) := p′(0)q(4)− 5p′(3)q′′(1
2
)

is a bilinear form.

�

Exercise 3.18. Are the following functions bilinear forms?

(1) V = R2 and ϕ(u, v) := det

[
u
v

]
;

(2) V = R[x]2 and ϕ(p, q) :=
∫ 1

0
p(x)q(x)dx;
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(3) V = M2×2(R), the space of real 2 × 2 matrices, and ϕ(L,M) := L1
1 trM ,

where L1
1 it the (1,1)-entry of L and trM is the trace of M ;

(4) V = R3 and ϕ(v, w) := v × w;
(5) V = R2 and ϕ(v, w) is the area of the parallelogram spanned by v and w.

3.2.2. Tensor product of two linear forms on V . Let α, β ∈ V ∗ be two
linear forms, α, β : V → R, and define ϕ : V × V → R, by

ϕ(v, w) := α(v)β(w) .

Then ϕ is bilinear, is called the tensor product of α and β and is denoted by

ϕ = α⊗ β .
Note 3.19. In general α⊗ β 6= β ⊗ α, as there could be vectors v and w such that
α(v)β(w) 6= β(v)α(w).

Example 3.20. Let V = R[x]2, let α(p) = p(2)−p′(2) and β(p) =
∫ 4

3
p(x)dx be two

linear forms. Then

(α⊗ β)(p, q) = (p(2)− p′(2))

∫ 4

3

q(x)dx

is a bilinear form. �

Example 3.21. Let ϕ : R× R→ R be a function:

(1) ϕ(x, y) := 2x− y is a linear form in (x, y) ∈ R2;
(2) ϕ(x, y) := 2xy is bilinear, hence linear in x ∈ R and linear in y ∈ R, but it

is not linear in (x, y) ∈ R2.

�

Let

Bil(V × V,R) := {all bilinear forms ϕ : V × V → R} .

Exercise 3.22. Check that Bil(V × V,R) is a vector space with the zero element
equal to the bilinear form identically equal to zero.
Hint: It is enough to check that if ϕ, ψ ∈ Bil(V × V,R), and λ, µ ∈ R, then
λϕ+ µψ ∈ Bil(V × V,R). Why? (Recall Example 2.3(4).)

Assuming Exercise 3.22, we are going to find a basis of Bil(V × V,R) and deter-
mine its dimension. Let B := {b1, . . . , bn} be a basis of V and let B∗ = {β1, . . . , βn}
be the dual basis of V ∗ (that is βi(bj) = δij).

Proposition 3.23. The bilinear forms β1 ⊗ βj, i, j = 1, . . . , n form a basis of
Bil(V × V,R). As a consequence dim Bil(V × V,R) = n2.

Notation. We denote

Bil(V × V,R) = V ∗ ⊗ V ∗

the tensor product of V ∗ and V ∗.
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Proof of Proposition 3.23. The proof will be similar to the one of Proposi-
tion 3.8 for linear forms. We first check that the set of bilinear forms {β1⊗βj, i, j =
1, . . . , n} span Bil(V × V,R) and than that it consists of linearly independent ele-
ments.

To check that span{βi ⊗ βj, i, j = 1, . . . , n} = Bil(V × V,R), we need to check
that if ϕ ∈ Bil(V × V,R), there exists Bij ∈ R such that

ϕ = Bijβ
i ⊗ βj .

Because of (3.2), we obtain

ϕ(bk, b`) = Bijβ
i(bk)β

j(b`) = Bijδ
i
kδ
j
` = Bk` ,

for every pair (bk, b`) ∈ V × V . Hence we are forced to choose Bk` := ϕ(bk, b`). Now
we have to check that with this choice of Bk` we have indeed

ϕ(v, w) = Bijβ
i(v)βj(w)

for arbitrary v = vkbk ∈ V and w = w`b` ∈ V .
On the one hand we have that

ϕ(v, w) = ϕ(vkbk, w
`b`) = vkw`ϕ(bk, b`) = vkw`Bk` ,

where the next to the last equality follows from the bilinearity of ϕ and the last one
from the definition of Bk`.

On the other hand,

Bijβ
i(v)βj(w) = Bijβ

i(vkbk)β
j(v`b`)

= Bijv
kβi(bk)v

`βj(b`)

= Bijv
kv`δikδ

j
`

= Bk`v
kw` ,

where the second equality follows from the bilinearity of βi and the next to the last
from (3.2).

Now we need to check that the only linear combination of the βi⊗ βj that gives
the zero bilinear form is the trivial linear combination. Let cijβ

i ⊗ βj = 0 be a
linear combination of the βi ⊗ βj. Then for all pairs of basis vectors (bk, b`), with
k, ` = 1, . . . , n, we have

0 = cijβ
i ⊗ βj(bk, b`) = cijδ

i
kδ
j
` = ck` ,

thus showing the linear independence. �

3.2.3. Transformation of Bilinear Forms under a Change of Basis. If
we summarize what we have done so far, we see that once we choose a basis B :=
{b1, . . . , bn} of V , we automatically have a basis B∗ = {β1, . . . , βn} of V ∗ and a basis
{β1 ⊗ βj, i, j = 1, . . . , n} of V ∗ ⊗ V ∗.

That is, any bilinear form ϕ : V × V → R can be represented by its components

Bij = ϕ(bi, bj)(3.13)
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and these components can be arranged in a matrix

B :=

B11 . . . B1n

...
...

Bn1 . . . Bnn


called the matrix of the bilinear form ϕ with respect to the chosen basis B.
The natural question of course is: how does the matrix B change when we choose a
different basis of V ?

So, let us choose a different basis B̃ := {b̃1, . . . , b̃n} and corresponding bases

B̃∗ = {β̃1, . . . , β̃n} of V ∗ and {β̃i ⊗ β̃j, i, j = 1, . . . , n} of V ∗ ⊗ V ∗, with respect to

which ϕ will be represented by a matrix B̃, whose entries are B̃ij = ϕ(b̃i, b̃j).

To see the relation between B and B̃, due to the change of basis from B to B̃,
we start with the matrix of the change of basis L := LB̃B, according to which

b̃j = Lijbi .(3.14)

Then

B̃ij = ϕ(b̃i, b̃j) = ϕ(Lki bk, L
`
jb`) = LkiL

`
jϕ(bk, b`) = LkiL

`
jBk` ,

where the first and the last equality follow from (3.13), the second from (3.14) (
after having renamed the dummy indices to avoid conflicts) and the remaining one
from the bilinearity.

Exercise 3.24. Show that the formula of the transformation of the component of
a bilinear form in terms of the matrices of the change of coordinates is

B̃ = tLBL ,(3.15)

where tL denotes the transpose of the matrix L.

We hence say that a bilinear form ϕ is a covariant 2-tensor or a tensor of
type (0, 2).

3.3. Multilinear forms

We saw in § 3.1.2 that linear forms are covariant 1-tensors – or tensor of type
(0, 1) – and in § 3.2.3 that bilinear forms are covariant 2-tensors – or tensors of type
(0, 2).

Completely analogously to what was done until now, one can define trilinear
forms, that is functions T : V × V × V → R that are linear in each of the three
variables. The space of trilinear forms is denoted by V ∗ ⊗ V ∗ ⊗ V ∗, has basis
{βj ⊗ βj ⊗ βk, i, j, k = 1, . . . , n} and hence dimension n3.

Since the components of a trilinear form T : V ×V ×V → R satisfy the following
transformation with respect to a change of basis

T̃ijk = L`iL
p
jL

q
kT`pq ,

a trilinear form is a covariant 3-tensor or a tensor of type (0, 3).
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In fact, there is nothing special about k = 1, 2 or 3.

Definition 3.25. A multilinear form if a function f : V × · · · × V → R from
k-copies of V into R, that is linear with respect to each variable.

A multilinear form is a covariant k-tensor or a tensor of type (0, k). The
vectors space of multilinear forms V ∗ ⊗ · · · ⊗ V ∗ has basis βi1 ⊗ βi2 ⊗ · · · ⊗ βik ,
i1, . . . , ik := 1, . . . , n and hence dim(V ∗ ⊗ · · · ⊗ V ∗) = nk .

3.4. Examples

3.4.1. A Bilinear Form.

Example 3.26. We continue with the study of the scalar triple product, that was
defined in Example 3.15. We want to find the components Bij of ϕu with respect

to the standard basis of R3. Let u =

u1

u2

u3

 be the fixed vector. Recall the cross

product in R3 is defined as

ei × ej :=


0 if i = j

ek if (i, j, k) is a cyclic permutation of (1, 2, 3)

−ek if (i, j, k) is a non-cyclic permutation of (1, 2, 3) ,

that is

cy
cl

ic


e1 × e2 = e3

e2 × e3 = e1

e3 × e1 = e2

and

n
on

-c
y
cl

ic


e2 × e1 = −e3

e3 × e2 = −e1

e1 × e3 = −e2

Since u • ek = uk, then

Bij = ϕu(ei, ej) = u • (ei × ej) =


0 if i = j

uk if (i, j, k) is a cyclic permutation of (1, 2, 3)

−uk if (i, j, k) is a non-cyclic permutation of (1, 2, 3)

Thus

B12 = u3 = −B21

B23 = u1 = −B32

BII = 0 (that is the diagonal components are zero) ,

which can be written as a matrix

B =

 0 u3 −u2

−u3 0 u1

u2 −u1 0

 .
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We look now for the matrix of the scalar tripe product with respect to the basis

B̃ :=

{0
1
0


︸ ︷︷ ︸
b̃1

,

1
0
1


︸ ︷︷ ︸
b̃2

,

0
0
1


︸ ︷︷ ︸
b̃3

}
.

The matrix of the change of coordinates from the standard basis to B̃ is

L =

0 1 0
1 0 0
0 1 1

 ,

so that

B̃ =

0 1 0
1 0 1
0 0 1


︸ ︷︷ ︸

tL

 0 u3 −u2

−u3 0 u1

u2 −u1 0


︸ ︷︷ ︸

B

0 1 0
1 0 0
0 1 1


︸ ︷︷ ︸

L

=

0 1 0
1 0 1
0 0 1


︸ ︷︷ ︸

tL

 u3 −u2 −u2

0 u1 − u3 u1

−u1 u2 0


︸ ︷︷ ︸

BL

=

 0 u1 − u3 u1

u3 − u1 0 −u2

−u1 u2 0

 .

It is easy to check that B̃ is antisymmetric just like B is, and to check that the

components of B̃ are correct by using the formula for ϕ. In fact

B̃12 = ϕ(b̃1, b̃2) = u • (e2 × (e1 + e3)) = u1 − u3

B̃13 = ϕ(b̃2, b̃3) = u • ((e2)× e3) = u1

B̃23 = ϕ(b̃2, b̃3) = u • ((e1 + e3)× e3) = −u2

B̃11 = ϕ(b̃1, b1) = u • (e2 × e2) = 0

B̃22 = ϕ(b̃2, b2) = u • ((e1 + e3)× (e1 + e3)) = 0

B̃33 = ϕ(b̃3, b3) = u • (e3 × e3) = 0

�

3.4.2. A Trilinear Form.

Example 3.27. If in the definition of the scalar triple product instead of fixing a
vector a ∈ R, we let the vector vary, we have a function ϕ : R3 × R3 × R3 → R,
defined by

ϕ(u, v, w) := u • (v × w) = det

uv
w

 .
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One can verify that such function is trilinear, that is linear in each of the three
variables separately.

3.5. Basic Operation on Multilinear Forms

Let T : V × · · · × V︸ ︷︷ ︸
k times

→ R and U : V × · · · × V︸ ︷︷ ︸
` times

→ R be respectively a k-linear

and an `-linear form. Then the tensor product of T and U

T ⊗ U : V × · · · × V︸ ︷︷ ︸
k+` times

→ R ,

defined by

T ⊗ U(v1, . . . , vk+`) := T (v1, . . . , vk)U(vk+1, . . . , vk+`)

is a (k + `)-linear form.
Likewise, one can take the tensor product of a tensor of type (0, k) and a tensor

of type (0, `) to obtain a tensor of type (0, k + `).





CHAPTER 4

Inner Products

4.1. Definitions and First Properties

Inner products are a special case of bilinear forms. They add an important
structure to a vector space, as for example they allow to compute the length of a
vector. Moreover, they provide a canonical identification between the vector space
V and its dual V ∗.

Definition 4.1. An inner product g : V ×V → R on a vector space V is a bilinear
form on V that is

(1) symmetric, that is g(v, w) = g(w, v) for all v, w ∈ V and
(2) positive definite, that is g(v, v) ≥ 0 for all v ∈ V , and g(v) = 0 if and only

if v = 0.

Exercise 4.2. Let V = R3. Determine whether the following bilinear forms are
inner products, by verifying whether they are symmetric and positive definite:

(1) the scalar or dot product ϕ(v, w) := v • w, defined as

v • w = viwi ,

where v =

v1

v2

v3

 and w =

w1

w2

w3

;

(2) ϕ(v, w) := −v • w, for all v, w ∈ V ;
(3) ϕ(v, w) = v • w + 2v1w2, for v, w ∈ V ;
(4) ϕ(v, w) = v • 3w, for v, w ∈ V .

Exercise 4.3. Let V := R[x]2 be the vector space of polynomials of degree ≤ 2.
Determine whether the following bilinear forms are inner products, by verifying
whether they are symmetric and positive definite:

(1) ϕ(p, q) =
∫ 1

0
p(x)q(x)dx;

(2) ϕ(p, q) =
∫ 1

0
p′(x)q′(x)dx;

(3) ϕ(p, q) =
∫ π

3
exp(x)q(x)dx;

(4) ϕ(p, q) = p(1)q(1) + p(2)q(2);
(5) ϕ(p, q) = p(1)q(1) + p(2)q(2) + p(3)q(3).

Definition 4.4. Let g : V × V → R be an inner product on V .

39
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(1) The norm ‖v‖ of a vector v ∈ V is defined as

‖v‖ :=
√
g(v, v) .

(2) A vector v ∈ V is unit vector if ‖v‖ = 1;
(3) Two vectors v, w ∈ V are orthogonal (that is perpendicular or v ⊥ w),

if g(v, w) = 0;
(4) Two vectors v, w ∈ V are orthonormal if they are orthogonal and ‖v‖ =
‖w‖ = 1;

(5) A basis B of V is an orthonormal basis if b1, . . . , bn are pairwise orthonor-
mal vectors, that is

g(bi, bj) = δij :=

{
1 if i = j

0 if i 6= j ,
(4.1)

for all i, j = 1 . . . , n. The condition for i = j implies that an orthonormal
basis consists of unit vectors, while the one for i 6= j implies that it consists
of pairwise orthogonal vectors.

Example 4.5. (1) Let V = R[x]2 and g the standard inner product. The
standard basis B = {e1, . . . , en} is an orthonormal basis with respect to the
standard inner product.

(2) Let V = R[x]2 and let g(p, q) :=
∫ 1

−1
p(x)q(x)dx. Check that the basis

B = {p1, p2, p3} ,
where

p1(x) :=
1√
2
, p2(x) :=

√
3

2
x, p3(x) :=

√
5

8
(3x2 − 1) ,

is an orthonormal basis with respect to the inner product g.

Remark 4.6. p1, p2, p3 are the first three Legendre polynomials up to
scaling.

An inner product g on a vector space V is also called a metric on V .

4.1.1. Correspondence Between Inner Products and Symmetric Pos-
itive Definite Matrices. Recall that a matrix S ∈ Mn×n(R) is symmetric if
S = tS, that is if

S =


∗ A B ..

.

A ∗ C ..
.

B C ∗ . .
.

. .
.
. .
.

∗

 .

Moreover if S is symmetric, then
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(1) S is positive definite if tvSv > 0 for all v ∈ Rn;
(2) S is negative definite if tvSv < 0 for all v ∈ Rn;
(3) S is positive semidefinite if tvSv ≥ 0 for all v ∈ Rn;
(4) S is positive semidefinite if tvSv ≤ 0 for all v ∈ Rn;
(5) S is indefinite if vtSv takes both positive and negative values for different

v ∈ Rn.

Definition 4.7. A quadratic form Q : Rn → R is a homogeneous quadratic
polynomial in n variables.

Any symmetric matrix S correspond to a quadratic form as follow:

S 7→ QS ,

where QS : Rn → R is defined by

QS(v) = tvSv =
[
v1 . . . vn

]
S

v
1

...
vn


︸ ︷︷ ︸

matrix notation

Sij = vivjSij︸ ︷︷ ︸
Einstein notation

.(4.2)

Note that Q is not linear in v.
Let S be a symmetric matrix and QS be the corresponding quadratic form.

The notion of positive definiteness, etc. for S can be translated into corresponding
properties for QS, namely:

(1) Q is positive definite if Q(v) > 0 for all v ∈ V ;
(2) Q is negative definite if Q(v) < 0 for all v ∈ V ;
(3) Q is positive semidefinite if Q(v) ≥ 0 for all v ∈ V ;
(4) Q is negative semidefinite if Q(v) ≤ 0 for all v ∈ V ;
(5) Q is indefinite if Q(v) takes both positive and negative values.

To find out the type of a symmetric matrix S (or, equivalently of a quadratic
form QS) it is enough to look at the eigenvalues of S, namely:

(1) S and QS are positive definite if all eigenvalues of S are positive:
(2) S and QS are negative definite if all eigenvalues of S are negative;
(3) S and QS are positive semidefinite if all eigenvalues of S are non-negative;
(4) S and QS are negative semidefinite if all eigenvalues of S are non-positive;
(5) S and QS are indefinite if S has both positive and negative eigenvalues.

The reason this makes sense is the same reason for which we need to restrict our
attention to symmetric matrices and lies in the so-called Spectral Theorem:

Theorem 4.8. [Spectral Theorem] Any symmetric matrix S has the following prop-
erties:

(1) it has only real eigenvalues;
(2) it is diagonalizable;
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(3) it admits an orthonormal eigenbasis, that is a basis {b1, . . . , bn} such that
the bj are orthonormal and are eigenvectors of S.

4.1.1.1. From Inner Products to Symmetric Positive Definite Matrices. Let B :=
{b1, . . . , bn} be a basis of V . The components of g with respect to B are

gij = g(bi, bj) .(4.3)

Let G be the matrix with entries gij

G =

g11 . . . g1n

...
. . .

...
gn1 . . . gnn

 .(4.4)

We claim that G is symmetric and positive definite. In fact:

(1) Since g is symmetric, then for 1 ≤ i, j ≤ n,

gij = g(bi, bj) = g(bj, bi) = gji ⇒ G is a symmetric matrix;

(2) Since g is positive definite, then G is positive definite as a symmetric matrix.
In fact, let v = vibi, w = wjbj ∈ V be two vectors. Then, using the
bilinearity of g in (1), (4.3) and with the Einstein notation, we have:

g(v, w) = g(vibi, w
jbj)

(1)
= viwj g(bi, bj)︸ ︷︷ ︸

gij

= viwjgij

or, in matrix notation,

g(v, w) = t[v]BG[w]B =
[
v1 . . . vn

]
G

w
1

...
wn

 .

4.1.1.2. From Symmetric Positive Definite Matrices to Inner Products. If S is a
symmetric positive definite matrix, then the assignment

(v, w) 7→ tvSw

defines a map that is easily seen to be bilinear, symmetric and positive definite and
is hence an inner product.

4.1.2. Orthonormal Basis. Suppose that there is a basis B := {b1, . . . , bn} of
V consisting of orthonormal vectors with respect to g, so that

gij = δij ,

because of Definition 4.4(5) and of (4.3). In other words the symmetric matrix
corresponding to the inner product g in the basis consisting of orthonormal vectors
is the identity matrix. Moreover

g(v, w) = viwjgij = viwjδij = viwi ,
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so that, if v = w,

‖v‖2 = g(v, v) = vivi = (v1)2 + · · ·+ (vn)2 .

We deduce the following important

Fact 4.9. Any inner product g can be expressed in the standard form

g(v, w) = viwi ,

as long as [v]B =

v
1

...
vn

 and [w]B =

w
1

...
wn

 are the coordinates of v and w with

respect to an orthonormal basis B for g.

Example 4.10. Let g be an inner product of R3 with respect to which

B̃ :=

{1
0
0


︸ ︷︷ ︸
b̃1

,

1
1
0


︸ ︷︷ ︸
b̃2

,

1
1
1


︸ ︷︷ ︸
b̃3

}

is an orthonormal basis. We want to express g with respect to the standard basis E
of R3

E :=

{1
0
0


︸ ︷︷ ︸
e1

,

0
1
0


︸ ︷︷ ︸
e2

,

0
0
1


︸ ︷︷ ︸
e3

}
.

The matrices of the change of basis are

L := LB̃E =

1 1 1
0 1 1
0 0 1

 and Λ = L−1 =

1 −1 0
0 1 −1
0 0 1

 .

Since g is a bilinear form, we saw in (3.15) that its matrices with respect to a change
of basis are related by the formula

G̃ = tLGL .

Since the basis B̃ is orthonormal with respect to g, the associated matrix G̃ is the
identity matrix, so that

G =tΛG̃Λ = tΛΛ

=

 1 0 0
−1 1 0
0 −1 1

1 −1 0
0 1 −1
0 0 1

 =

 1 −1 0
−1 2 −1
0 −1 2

 .
(4.5)
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It follows that, with respect to the standard basis, g is given by

g(v, w) =
(
v1 v2 v3

) 1 −1 0
−1 2 −1
0 −1 2

w1

w2

w3


= v1w1 − v1w2 − v2w1 + 2v2w2

−v2w3 − v3w2 + 2v3w3 .

(4.6)

�

Exercise 4.11. Verify the formula (4.6) for the inner product g in the coordinates

of the basis B̃ by applying the matrix of the change of coordinate directly on the
coordinates vectors [v]E .

Remark 4.12. Norm and inner product of vectors depend only on the choice of g,
but not on the choice of basis: different coordinate expressions yield the same result.

Example 4.13. We verify the assertion of the previous remark with the inner prod-
uct in Example 4.10. Let v, w ∈ R3 such that

[v]E =

v1

v2

v3

 =

3
2
1

 and [v]B̃ =

ṽ1

ṽ2

ṽ3

 = L−1

v1

v2

v3

 =

1
1
1


and

[w]E =

w1

w2

w3

 =

1
2
3

 and [w]B̃ =

w̃1

w̃2

w̃3

 = L−1

w1

w2

w3

 =

−1
−1
3

 .

Then with respect to the basis B̃ we have that

g(v, w) = 1 · (−1) + 1 · (−1) + 1 · 3 = 1 ,

and also with respect to the basis E
g(v, w) = 3 · 1− 3 · 2− 2 · 1 + 2 · 2 · 2− 2 · 3− 1 · 2 + 2 · 1 · 3 = 1 .

�

Exercise 4.14. Verify that ‖v‖ =
√

3 and ‖w‖ =
√

11, when computed with respect
of both bases.

Let B := {b1, . . . , bn} be an orthonormal basis and let v = vibi be a vector in V .
We want to compute the coordinates vi of v with respect of the metric g and of the
elements of the basis. In fact

g(v, bj) = g(vibi, bj) = vig(bi, bj) = viδij = vj ,

that is the coordinates of a vector with respect to an orthonormal basis are the inner
product of the vector with the basis vectors. This is particularly nice, so that we
have to make sure that we remember how to construct an orthonormal basis from a
given arbitrary basis.
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Recall (Gram–Schmidt orthogonalization process). The Gram–Schmidt orthogo-
nalization process is a recursive process that allows us to obtain an orthonormal
basis starting from an arbitrary one. Let B := {b1, . . . , bn} be an arbitrary basis, let
g : V × V → R be an inner product and ‖ · ‖ the corresponding norm.

We start by defining

u1 :=
1

‖b1‖
b1 .

Next, observe that g(b2, u1)u1 is the projection of the vector b2 in the direction of
u1. It follows that

b⊥2 := b2 − g(b2, u1)u1

is a vector orthogonal to u1, but not necessarily of unit norm. Hence we set

u2 :=
1

‖b⊥2 ‖
b⊥2 .

Likewise g(b3, u1)u1 + (b3, u2)u2 is the projection of b3 on the plane generated by u1

and u2, so that

b⊥3 := b3 − g(b3, u1)u1 − g(b3, u2)u2

is orthogonal both to u1 and to u2. Set

u3 :=
1

‖b⊥3 ‖
b⊥3 .

Continuing until we have exhausted all elements of the basis B, we obtain an or-
thonormal basis {u1, . . . , un}.

u1

u2

u3

b3

b2b2

b3

u2

b3

b1 b1 u1

Example 4.15. Let V be the subspace of R4 spanned by

b1 =


1
1
−1
−1

 b2 =


2
2
0
0

 b3 =


1
1
1
0

 .

(One can check that b1, b2, b3 are linearly independent and hence form a basis of V .)
We look for an orthonormal basis of V with respect to the standard inner product
〈 · , · 〉. Since

‖b1‖ = (11 + 12 + (−1)2 + (−1)2)1/2 = 2⇒ u1 :=
1

2
b1 .
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Moreover

〈b2, u1〉 =
1

2
(1 + 1) = 2 =⇒ b⊥2 := b2 − 〈b2, u1〉u1 =


1
1
1
1

 ,

so that

‖b2‖ = 2 and u2 =
1

2


1
1
1
1

 .

Finally,

〈b3, u1〉 =
1

2
(1 + 1− 1) =

1

2
and 〈b3, u2〉 =

1

2
(1 + 1 + 1) =

3

2

implies that

b⊥3 := b3 − 〈b3, u1〉u1 − 〈b3, u2〉u2 =


0
0
1
2
−1

2

 .

Since

‖b⊥3 ‖ =

√
2

2
=⇒ u3 :=

√
2

2


0
0
1
−1

 .

4.2. Reciprocal Basis

Let g : V × V → R be an inner product and B := {b1, . . . , bn} any basis of V .
From g and B we can define another basis of V , denoted by

Bg = {b1, . . . , bn}
and satisfying

g(bi, bj) = δij .(4.7)

The basis Bg is called the reciprocal basis of V with respect to g and B.
Note that, strictly speaking, we are very imprecise here. In fact, while it is

certainly possible to define a set of n = dimV vectors as in (4.7), we should justify
the fact that we call it a basis. This will be done in Claim 4.18.

Remark 4.16. In general Bg 6= B and in fact, because of Definition 4.4(5),

B = Bg ⇐⇒ B is an orthonormal basis.
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Example 4.17. Let g be the inner product in (4.6) in Example 4.10 and let E the
standard basis of R3. We want to find the reciprocal basis Eg, that is we want to
find Eg := {b1, b2, b3} such that

g(bi, ej) = δij .

If G is the matrix of the inner product in (4.5), using the matrix notation and
considering bj as a row vector and ei as a column vector for i, j = 1, 2, 3,

[
–– tbi ––

]
G

 |ej
|

 = δij .

Letting i and j vary from 1 to 3, we obtain–– tb1 ––
–– tb2 ––
–– tb3 ––

 1 −1 0
−1 2 −1
0 −1 2

 | | |
e1 e2 e3

| | |

 =

1 0 0
0 1 0
0 0 1

 ,

from which we conclude that–– tb1 ––
–– tb2 ––
–– tb3 ––

 =

 | | |
e1 e2 e3

| | |

−1  1 −1 0
−1 2 −1
0 −1 2

−1

=

 | | |
e1 e2 e3

| | |

3 2 1
2 2 1
1 1 1

 =

3 2 1
2 2 1
1 1 1

 .

Hence

b1 =

3
2
1

 , b2 =

2
2
1

 , b3 =

1
1
1

 .(4.8)

Observe that in order to computeG−1 we used the Gauss–Jordan elimination method 1 −1 0 1 0 0
−1 2 −1 0 1 0
0 −1 2 0 0 1

 !

1 −1 0 1 0 0
0 1 −1 1 1 0
0 −1 2 0 0 1


!

1 0 −1 2 1 0
0 1 −1 1 1 0
0 0 1 1 1 1


!

1 0 0 3 2 1
0 1 0 2 2 1
0 0 1 1 1 1


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4.2.1. Properties of Reciprocal Bases.

Claim 4.18. Given a vector space V with a basis B and an inner product g : V ×V →
R, a reciprocal basis exists and is unique.

As we pointed out right after the definition of reciprocal basis, what this claim
really says is that there is a set of vectors {b1, . . . , bn} in V that satisfy (4.7), that
form a basis and that this basis is unique.

Proof. Let B := {b1, . . . , bn} be the given basis. Any other basis {b1, . . . , bn}
is related to B by the relation

bi = M ijbj(4.9)

for some invertible matrix M . We want to show that there exists a unique matrix
M such that, when (4.9) is plugged into g(bi, bj), we have

g(bi, bj) = δij .(4.10)

From (4.9) and (4.10) we obtain

δij = g(bi, bj) = g(M ikbk, bj) = M ikg(bk, bj) = M ikgkj ,

which, in matrix notation becomes

I = MG,

where G is the matrix of g with respect to B whose entries are gij as in (4.4). Since
G is invertible because it is positive definite, then M = G−1 exists and is unique. �

Remark 4.19. Note that in the course of the proof we have found that, since M =
LBgB, then

G = (LBgB)−1 = LBBg .

We denote with gij the entries of M = G−1. From the above discussion, it follows
that with this notation

gikgkj = δij(4.11)

as well as

bi = gijbj ,(4.12)

or (
b1 . . . bn

)
=
(
b1 . . . bn

)
G−1 .(4.13)

(check for example the dimensions and the indices to understand why G−1 has to
be multiplied on the right). We can now compute g(bi, bj)

g(bi, bj)
(4.12)
= g(gikbk, g

j`b`) = gikgj`g(bk, b`)

(4.1)
= gj`δi`

(4.11)
= gji = gij ,
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where we used in the second equality the bilinearity of g and in the last its symmetry.
Thus, similarly to (4.1), we have

gij = g(bi, bj) .(4.14)

Given that we just proved that reciprocal basis are unique, we can talk about
the reciprocal basis (of a fixed vector space V associated to a basis and an inner
product).

Claim 4.20. The reciprocal basis is contravariant.

Proof. Let B and B̃ be two bases of V and L := LB̃B be the corresponding
matrix of the change of bases, with Λ = L−1. Recall that this means that

b̃i = Lji bj .

We have to check that if Bg = {b1, . . . , bn} is a reciprocal basis for B, then the

basis {b̃1, . . . , b̃n} defined by

b̃i = Λi
kb
k(4.15)

is a reciprocal basis for B̃. Then the assertion will be proven, since {b̃1, . . . , b̃n} is
contravariant by construction.

To check that {b̃1, . . . , b̃n} is the reciprocal basis, we need with check that with

the choice of b̃i as in (4.15), the property (4.1) of the reciprocal basis is verified,
namely that

g(b̃i, b̃j) = δij .

But in fact,

g(b̃i, b̃j)
(4.15)
= g(Λi

kb
k, L`jb`) = Λi

kL
`
jg(bk, b`)

(4.10)
= Λi

kL
`
jδ
k
` = Λi

kL
k
j = δij ,

where the second equality comes from the bilinearity of g, the third from the property
(4.7) defining reciprocal basis and the last from the fact that Λ = L−1. �

Suppose now that V is a vector space with a basis B and that Bg is the reciprocal
basis of V with respect to B and to a fixed inner product g : V × V → R. Then
there are two ways of writing a vector v ∈ V , namely

v = vibi︸︷︷︸
with respect to B

= vjb
j︸︷︷︸

with respect to Bg

.

Recall that the (ordinary) coordinates of v with respect to B are contravariant
(see Example 1.2).

Claim 4.21. Vector coordinates with respect to the reciprocal basis are covariant.
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Proof. This will follow from the fact that the reciprocal basis is contravariant
and the idea of the proof is the same as in Claim 4.20.

Namely, let B, B̃ be two bases of V , L := LB̃B the matrix of the change of basis

and Λ = L−1. Let Bg and B̃g be the corresponding reciprocal bases and v = vjb
j a

vector with respect to Bg.
It is enough to check that the numbers

ṽi := Ljivj

are the coordinates of v with respect to B̃g, because in fact these coordinates are
covariant by definition. But in fact, using this and (4.15), we obtain

ṽib̃
i = (Ljivj)(Λ

i
kb
k) = LjiΛ

i
k︸ ︷︷ ︸

δjk

vjb
k = vjb

j = v

�

Definition 4.22. The coordinates vi of a vector v ∈ V with respect to the reciprocal
basis Bg are called the covariant coordinates of v.

4.2.2. Change of basis from a basis B to its reciprocal basis Bg. We want
to look now at the direct relationship between the covariant and the contravariant
coordinates of a vector v. Recall that we can write

vibi︸︷︷︸
with respect to B

= v = vjb
j︸︷︷︸

with respect to Bg

.

from which we obtain

(vigij)b
j = vi(gijb

j) = vibi = v = vjb
j ,

and hence

vj = vigij or t[v]Bg = G[v]B , .(4.16)

Likewise, from

vibi = v = vjb
j = vj(g

jibi) = (vjg
ji)bi

it follows that

vi = vjg
ji or [v]B = G−1t[v]Bg .(4.17)

Example 4.23. Let B = {e1, e2, e3} be the standard basis of R3 and let

G =

 1 −1 0
−1 2 −1
0 −1 2


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be the matrix of g with respect to B. In (4.8) Example 4.17 we saw that

Bg =

{
b1 =

3
2
1

 , b2 =

2
2
1

 , b3 =

1
1
1

}

is the reciprocal basis. We find the covariant coordinates of v =

4
5
6

 with respect

to Bg using (4.16), namely

[v]Bg = G[v]B =

 1 −1 0
−1 2 −1
0 −1 2

4
5
6

 =
(
−1 0 7

)
.

In fact,

vib
i = (−1)

3
2
1

+ 0

2
2
1

+ 7

1
1
1

 =

4
5
6

 .

�

Example 4.24. Let V := R[x]1 be the vector space of polynomials of degree ≤ 1
(that is “linear” polynomial, or of the form a+ bx). Let g : V × V → R be defined
by

g(p, q) :=

∫ 1

0

p(x)q(x)dx ,

and let B := {1, x} be a basis of V . Determine:

(1) the matrix G;
(2) the matrix G−1;
(3) the reciprocal basis Bg;
(4) the contravariant coordinates of p(x) = 6x (that is the coordinates of p(x)

with respect to B);
(5) the covariant coordinates of p(x) = 6x (that is the coordinates of p(x) with

respect to Bg).
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(1) The matrix G has entries gij = g(bi, bi), that is

g11 = g(b1, b1) =

∫ 1

0

(b1)2dx =

∫ 1

0

dx = 1

g12 = g(b1, b2) =

∫ 1

0

b1b2dx =

∫ 1

0

x =
1

2

g21 = g(b2, b1) =

∫ 1

0

b2b1dx =
1

2

g22 = g(b2, b2) =

∫ 1

0

(b2)2dx =

∫ 1

0

x2dx =
1

3
,

so that

G =

(
1 1

2
1
2

1
3

)
.

(2) Since detG = 1 · 1
3
− 1

2
· 1

2
= 1

12
, then by using (2.7), we get

G−1 =

(
4 −6
−6 12

)
, .

(3) Using (4.13), we obtain that(
b1 b2

)
=
(
1 x

)
G−1 =

(
1 x

)( 4 −6
−6 12

)
=
(
4− 6x −6 + 12x

)
,

so that Bg = {4− 6x,−6 + 12x}.

(4) p(x) = 6x = 0·1+6·x, so that p(x) has contravariant coordinates [p(x)]B =

(
0
6

)
.

(5) From (4.16) it follows that if v = p(x), then(
v1

v2

)
= G

(
v1

v2

)
=

(
1 1

2
1
2

1
3

)(
0
6

)
=

(
3
2

)
.

In fact, one can easily check that

v1b
1 + v2b

2 = 3 · (4− 6x) + 2 · (−6 + 12x) = 6x .

4.2.3. Isomorphisms Between a Vector Space and its Dual. We saw
already in Proposition 3.8 that If V is a vector space and V ∗ is its dual, then
dimV = dimV ∗. In particular this means that V and V ∗ can be identified, once we
choose a basis B of V and a basis B∗ of V ∗. In fact, the basis B∗ of V ∗ is given once
we choose the basis B of V , as the dual basis of V ∗ with respect to B. Then there
is the following correspondence:

v ∈ V ! α ∈ V ∗ ,
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Table 1. Summary of covariance and contravariance of vector coordinates

B := {b1, . . . , bn} | Bg = {b1, . . . , bn}
basis | reciprocal basis

they are related by g(bi, bj) = δij

v = vibi | v = vib
i

contravariant | covariant
coordinates | coordinates

the matrices of g are gij = g(bi, bj) | gij = g(bi, bj)
the matrices are inverse

of each other, that is gikgkj = δij

the relation between the basis |
and the reciprocal basis is bi = gijb

j | bi = gijbj

the relation between covariant |
coordinates and contravariant vi = gijvj | vi = gijv

j

coordinates is |

exactly when v and α have the same coordinates, respectively with respect to B and
B∗, However this correspondence depends on the choice of the basis B and hence
not canonical.

If however V is endowed with an inner product, then there is a canonical
identification of V with V ∗ (that is an identification that does not depend on
the basis B of V ). In fact, let g : V × V → R be an inner product and let v ∈ V .
Then

g(v, · ) : V −→ R
w 7−→ g(v, w)

is a linear form and hence we have the following canonical identification given by
the metric

V ←→ V ∗

v ←→ v∗ := g(v, · ) .(4.18)

Note that the isomorphism sends the zero vector to the linear form identically equal
to zero, since g(v, · ) ≡ 0 if and only if v = 0, since g is positive definite.

So far, we have two bases of the vector space V , namely the basis B and the
reciprocal basis Bg and we have also the dual basis of the dual vector space V ∗. In
fact, under the isomorphism (4.18), the reciprocal basis of V and the dual basis of
V ∗ correspond to each other. This is easily seen because, under the isomorphism
(4.18) an element of the reciprocal basis bi correspond to the linear form g(bi, · )

bi ←→ g(bi, · )
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and the linear form g(bi, · ) : V → R has the property that

g(bi, bj) = δij .

Hence

g(bi, · ) ≡ βi ,

and under the canonical identification between V and V ∗ the reciprocal basis of V
corresponds to the dual basis of V ∗.

4.2.4. Geometric Interpretation. Let g : V × V → R be an inner product
and B := {b1, . . . , bn} a basis of V . The orthogonal projection of a vector ∈ V onto
bk is defined as

projbk v =
g(v, bk)

g(bk, bk)
bk .(4.19)

v

bk

prbk

In fact, projbk v is obviously parallel to bk and the following exercises shows that the
component v − projbk v is orthogonal to bk.

Exercise 4.25. With projbk v defined as in , we have

v − projbk v ⊥ bk ,

where the orthogonality is meant with respect to the inner product g.

Now let v = vib
i ∈ V be a vector written in terms of its covariant coordinates

(that is the coordinates with respect to the reciprocal basis). Then

g(v, bk) = g(vib
i, bk) = vi g(bi, bk)︸ ︷︷ ︸

δik

= vk ,

so that (4.19) becomes

projbk v =
vk

g(bk, bk)
bk .

If we assume that the elements of the basis B := {b1, . . . , bn} are unit vectors,
then (4.19) further simplifies to give

projbk v = vkbk .(4.20)

This equation shows the following:

Fact 4.26. The covariant coordinates of v give the orthogonal projection of v onto
b1, . . . , bn.

Likewise, the following holds basically by definition:
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Fact 4.27. The contravariant coordinates of v give the “parallel” projection of v
onto b1, . . . , bn.

vd1

v

b1pp1

op1

b2

pp2

vu2
op2

vd2

vu1

4.3. Why do we care/need co/contra-variant components?

Consider the following physical problem: Calculate the work performed by a force
F, on a particle to move the particle by a small displacement dx, in the Euclidean
plane. The work performed should be independent of the choice of the coordinate
system (i.e choice of basis) used. For the work to remain independent of choice of
basis we will see that if the components of the displacement change contravariantly,
then the components of the force should change covariantly.

To see this let B := {b1, b2} be a basis of the Euclidean plane. Suppose the force
F = (F1, F2) is exerted on a particle that moves with a displacement dx = (dx1, dx2).
Then the work done is given by

dW = F1dx
1 + F2dx

2

Suppose we are given another coordinate system B̃ := {b̃1, b̃2} and let F =
(F̃1, F̃2) and dx = (dx̃1, dx̃2). Then

dW = F̃1dx̃
1 + F̃2dx̃

2

Now assume that the coordinates of dx change contravariantly ;

dx̃i = Λi
jdx

j,

or equivalently

dxi = Lijdx̃
j,

where Λ = L−1 and L = (Lij) is the change of basis matrix from B to B̃.
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dW =F1dx
1 + F2dx

2

=F1[L1
1dx̃

1 + L1
2dx̃

2] + F2[L2
1dx̃

1 + L2
2dx̃

2]

=(F1L
1
1 + F2L

2
1)dx̃1 + (F1L

1
2 + F2L

2
2)dx̃2

Since the work performed is independent of basis chosen we also have

dW = F̃1dx̃
1 + F̃2dx̃

2.

This gives that
F̃1 = F1L

1
1 + F2L

2
1

F̃2 = F1L
1
2 + F2L

2
2.

Hence the coordinates of F transform covariantly; F̃i = LjiFj. Using matrices this

can be written as (F̃1, F̃2) = (F1, F2)L.



CHAPTER 5

Tensors

5.1. Generalities

Let V be a vector space. Up to now we saw several objects related to V , that we
said were “tensors”. We summarize them in Table 1. So, we seem to have a good
candidate for the definition of a tensor of type (0, q) for all q ∈ N, but we cannot
say the same for a tensor of type (p, 0) for all p ∈ N. The next discussion will lead
us to that point, and in the meantime we will discuss an important point.

5.1.1. Canonical isomorphism between V and (V ∗)∗. We saw in § 4.2.3
that any vector space is isomorphic to its dual, but the the isomorphism is not
canonical (that is, it depends on the choice of basis). We also saw that if there is
an inner product on V , then there is a canonical isomorphism. The point of this
section is to show that, even without an inner product, there is a always a canonical
isomorphism between V and its bidual (V ∗)∗, that is the dual of its dual.

To see this, let us observe first of all that

dimV = dim(V ∗)∗ .(5.1)

If fact, for any vector space W , we saw in Proposition 3.8 that dimW = dimW ∗. If
we apply this equality both to W = V and to W = V ∗, we obtain

dimV = dimV ∗ and dimV ∗ = dim(V ∗)∗ ,

from which (5.1) follows immediately. From (4.2.3) we deduce immediately that V
and (V ∗)∗ are isomorphic, and we only have to see that the isomorphism is canonical.

Table 1. Covariance and Contravariance

Tensor Components Behavior under a change of basis Type
vectors in V vi contravariant tensor (1,0)

linear forms V → R αj covariant tensor (0,1)

linear transformations V → V Aij mixed:

{
contravariant

covariant
tensor (1,1)

bilinear forms1 V × V → R Bij covariant 2-tensor (0,2)
k-linear forms V × · · · × V︸ ︷︷ ︸

k

→ R Fi1i2...ik covariant k-tensor (0,k)

57
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To this end, observe that a vector v ∈ V gives rise to a linear form on V ∗ defined
by

ϕv : V ∗ −→ R
α 7−→ α(v) .

Then we can define a linear map as follows:

Φ : V −→ (V ∗)∗

v 7→ ϕv{α 7→ α(v)}
(5.2)

Since for any linear map T : W → W between vector spaces

dimW = dim Range(T ) + dim ker(T ) ,

it will be enough to show that ker Φ = {0}, because then

dim(V ∗)∗ = dimV = dim Range(Φ) ,

that is Φ is an isomorphism. Notice that the important fact is that we have not
chosen a basis to define the isomorphism Φ.

To see that ker Φ = {0}, observe that the kernel consists of all vectors v ∈ V
such that α(v) = 0 for all α ∈ V ∗. We want to see that the only vector v ∈ V for
which this happens is the zero vector. In fact, if 0 6= v ∈ V and B := {b1, . . . , bn}
is any basis of V , then we can write v = vibi, where at least one vj 6= 0. But
then, if B∗ = {β1, . . . , βn} is the dual basis, 0 6= vj = βj(v). Notice again that the
dimension of the kernel of a linear map is invariant under a change of basis, and
hence ker Φ = {0} no matter what the basis B here was.

We record this fact as follows:

Fact 5.1. Let V be a vector space and V ∗ its dual. The dual (V ∗)∗ of V ∗ is
canonically isomorphic to V .

5.1.2. Towards general tensors. Recall that

V ∗ := {α : V → R : α is a linear form} = {(0, 1)-tensors} .
Applying this formula to the vector space V ∗ we obtain

(V ∗)∗ := {α : V ∗ → R : α is a linear form} .
Using the isomorphism (V ∗)∗ ∼= V and the fact that coordinate vectors are con-
travariant, we conclude that

{α : V ∗ → R : α is a linear form} = (V ∗)∗ = V = {(1, 0)-tensors} .
So changing the vector space from V to its dual V ∗ seems to have had the effect

to transform a covariant tensor of type (0, 1) into a contravariant one of type (1, 0).
We are going to apply this procedure to try to transform a covariant of type (0, 2)
into a contravariant one of type (2, 0).

Recall that

{ϕ : V × V → R : bilinear } = {(0, 2)-tensors} .
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and consider

{ϕ : V ∗ × V ∗ → R : bilinear} .

We can hence give the following definition:

Definition 5.2. A tensor of type (2, 0) is a bilinear form on V ∗, that is a bilinear
function σ : V ∗ × V ∗ → R.

Let

Bil(V ∗ × V ∗,R) = {σ : V ∗ × V ∗ → R : σ is a bilinear form} = {(2, 0)-tensors} .

Exercise 5.3. Check that Bil(V ∗ × V ∗,R) is a vector space, that is that if σ, τ ∈
Bil(V ∗ × V ∗,R) and λ, µ ∈ R, then λσ + µτ ∈ Bil(V ∗ × V ∗,R).

5.1.3. Tensor product of (1, 0)-tensors on V ∗. If v, w ∈ V are two vectors
(that is two (1, 0)-tensors), we define

σv,w : V ∗ × V ∗ → R

by

σv,w(α, β) := α(v)β(w) .

Since α and β are two linear forms, then σ

σv,w =: v ⊗ w

is bilinear and called the tensor product of v and w. Hence σ is a (2, 0)-tensor.

Note 5.4. In general

v ⊗ w 6= w ⊗ v ,

as there can be linear forms α, β such that α(v)β(w) 6= α(w)β(v).

Similar to what we saw in § 3.2.2, we can define a basis for the space of (2, 0)-
tensors by considering the (2, 0)-tensors defined by bi ⊗ bj, where B := {b1, . . . , bn}
is a basis of V .

Proposition 5.5. The elements bj ⊗ bj, i, j = 1, . . . , n form a basis of Bil(V ∗ ×
V ∗,R). Thus dim Bil(V ∗ × V ∗,R) = n2.

We will not prove the proposition here, as the proof is be completely analogous
to the one of Proposition 3.23.

Notation. We write

Bil(V ∗ × V ∗,R) = V ⊗ V .
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5.1.4. Components of a (2, 0)-tensor and their contravariance. Let σ :
V ∗ × V ∗ → R be a bilinear form on V ∗, that is a (2, 0)-tensor, as we just saw. We
want to verify that it behaves as we expect with respect to a change of basis. After
choosing a basis B := {b1, . . . , bn} of V , we have the dual basis B∗ = {β1, . . . , βn}
of V ∗ and the basis {bi ⊗ bj : i, j = 1, . . . , n} of the space of (2, 0)-tensors.

The (2, 0)-tensor σ is represented by its components

Sij = σ(βi, βj) ,

that is

σ = Sijbj ⊗ bj ,
and the components Sij can be arranged into a matrix

S =

S
11 . . . S1n

...
. . .

...
Sn1 . . . Snn


called the matrix of the (2, 0)-tensor with respect to the chosen basis of V .

We look now at how the components of a (2, 0)-tensor change with a change

of basis. Let B := {b1, . . . , bn} and B̃ := {b̃1, . . . , b̃n} be two basis of V and let

B∗ := {β1, . . . , βn} and B̃∗ := {β̃1, . . . , β̃n} be the corresponding dual basis of V ∗.
Let σ : V ∗ × V ∗ → R be a (2, 0)-tensor with components

Sij = σ(βi, βj) and S̃ij = σ(β̃i, β̃j)

with respect to B∗ and B̃∗ respectively. Let L := LB̃B be the matrix of the change

of basis from B to B̃, and let Λ = L−1. Then, as seen in (1.2) and (3.11) we have
that

b̃j = Lijbi and β̃i = Λi
jβ

j .

It follows that

S̃ij = σ(β̃i, β̃j) = σ(Λi
kβ

k,Λj
`β

`) = Λi
kΛ

j
`σ(βk, β`) = Λi

kΛ
j
`S

k` ,

where the first and the last equality follow from the definition of S̃ij and of Sk`

respectively, the second from the change of bases and the third from the bilinearity
of σ. We conclude that

S̃ij = Λi
kΛ

j
`S

kl .(5.3)

Hence σ is a contravariant 2-tensor..

Exercise 5.6. Verify that in terms of matrices (5.3) translates into

S̃ = tΛSΛ .

(Compare with (3.15).)



5.3. TENSOR PRODUCT 61

5.2. Tensors of type (p, q)

Definition 5.7. A tensor of type (p, q) or (p, q)-tensor is a multilinear form

T : V ∗ × . . . V ∗︸ ︷︷ ︸
p

×V × · · · × V︸ ︷︷ ︸
q

−→ R .

Let T be a (p, q)-tensor, B := {b1, . . . , bn} a basis of V and B∗ = {β1, . . . , βn} the
corresponding dual basis of V ∗. The components of T with respect to these bases
are

T
i1,...,ip
j1,...,jq

= T (βi1 , . . . , βip , bj1 , . . . , bjq) .

If moreover B̃ := {b̃1, . . . , b̃n} is another basis, B̃∗ = {β̃1, . . . , β̃n} is the coresponding
dual basis of V ∗ and L := LB̃B is the matrix of the change of basis with inverse
Λ := L−1, then the components of T with respect to these new bases are

T̃
i1,...,ip
j1,...,jq

= Λi1
k1
. . .Λ

ip
kp
L`1j1 . . . L

`q
jq
T
k1,...,kp
`1,...,`q

.

5.3. Tensor product

We saw already in § 3.2.2 and § 3.5 the tensor product of two multilinear forms.
Since multilinear forms are covariant tensors, we said that this corresponds to the
tensor product of two covariant tensors. More generally, we can define the tensor
product of any two tensors as follows:

Definition 5.8. Let

T : V ∗ × . . . V ∗︸ ︷︷ ︸
p

×V × · · · × V︸ ︷︷ ︸
q

−→ R

be a (p, q)-tensor and

U : V ∗ × . . . V ∗︸ ︷︷ ︸
k

×V × · · · × V︸ ︷︷ ︸
`

−→ R

a (k, `) tensor. The tensor product T ⊗ U of T and U is a (p+ k, q + `)-tensor

T ⊗ U : V ∗ × . . . V ∗︸ ︷︷ ︸
p+k

×V × · · · × V︸ ︷︷ ︸
q+`

−→ R

defined by

(T ⊗ U)(α1, . . . , αp+k, v1, . . . , vq+`) :=

T (α1, . . . , αp, v1, . . . , vq)U(αp+1, . . . , αp+k, vq+1, . . . , vq+`) .

Note that both T ⊗U and U ⊗ T are tensors of the same type (p+ k, q+ `), but
in general

T ⊗ U 6= U ⊗ T .
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The set of all tensors of type (p, q) on a vector space V is denoted by

T pq (V ) := {all (p, q)-tensors on V } .

Analogously to how we proceeded in the case of (0, 2)-tensors, we compute the
dimension of T pq (V ). If B := {b1, . . . , bn} is a basis of V and B∗ := {β1, . . . , βn} is
the corresponding dual basis of V ∗. Just like we saw in Proposition 5.5 in the case
of (0, 2)-tensors, a basis of T pq (V ) is

{bi1 ⊗ bi2 ⊗ · · · ⊗ bip ⊗ βj1 ⊗ βj2 ⊗ · · · ⊗ βjq : 1 ≤ i1, . . . , ip ≤ n, 1 ≤ j1, . . . , jq ≤ n} .
Since there are n× · · · × n︸ ︷︷ ︸

p

×n× · · · × n︸ ︷︷ ︸
q

= np+q elements in this basis (correspond-

ing to the possible choices of bik and βj`), we deduce that

dim T pq (V ) = np+q .

We now define the tensor product of two vector spaces:

Definition 5.9. Let V andW be two finite dimensional vector spaces, with dimV =
n and dimW = m. Choose {b1, . . . , bn} a basis of V and {a1, . . . , am} a basis of W .
Then the tensor product V ⊗W of V and W is an (n ·m)-dimensional vector
space with basis

{bi ⊗ aj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} .

We remark that there is no reason to restrict oneself to the tensor product of
only two factors. One can equally define the tensor product V1⊗· · ·⊗Vk, and obtain
a vector space of dimension dimV1 × · · · × dimVk.

There is hence an identification

T pq (V ) ∼= V ⊗ · · · ⊗ V︸ ︷︷ ︸
p

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q

,

that follows from the fact that both spaces have the same basis. The following
proposition gives other useful identifications.

Proposition 5.10. Let V and W be two finite dimensional vector spaces, with
dimV = n and dimW = m and let us denote by

Lin(V,W ∗) := {linear maps V → W ∗} .
Then

Bil(V ×W,R) ∼= Lin(V,W ∗)
∼= Lin(W,V ∗)
∼= V ∗ ⊗W ∗

∼= (V ⊗W )∗

∼= Lin(V ⊗W,R) .
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Proof. Here is the idea behind this chain of identifications. Let f ∈ Bil(V ×
W,R), that is a bilinear function f : V ×W → R. This means that f takes two
vectors, v ∈ V and w ∈ W , as input and gives back a real number f(v, w) ∈ R. If
on the other hand we only feed f one vector v ∈ V , then there is a remaining spot
waiting for a vector w ∈ W to produce a real number. Since f is linear on V and
on W , the map f(v, · ) : W → R is a linear form, so f(v, · ) ∈ W ∗. In other words,
we can view f ∈ Lin(V,W ∗). It follows that there is a linear map

Bil(V ×W,R) −→ Lin(V,W ∗)

f 7−→ Tf ,

where

Tf (v)(w) := f(v, w) .

Conversely, any T ∈ Lin(V,W ∗) can be identified with a bilinear map fT ∈ Bil(V ×
W,R) defined by

fT (v, w) := T (v)(w) .

Since fTf = f and TfT = T , we have proven the first identification in the proposition.
Analogously, if the input is only a vector w ∈ W , then f( · , w) : V → R is a linear

map and hence f ∈ Bil(V ×W,R) defines a linear map Tf ∈ Lin(W,V ∗). The same
reasoning as in the previous paragraph, shows that Bil(V ×W,R) ∼= Lin(W,V ∗).

To proceed with the identifications, observe that, because of our definition of
V ∗ ⊗W ∗, we have

Bil(V ×W,R) ∼= V ∗ ⊗W ∗ ,

since these spaces both have basis2

{βi ⊗ αj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} ,
where {b1, . . . , bn} is a basis of V with corresponding dual basis {β1, . . . , βn} of V ∗,
and {a1, . . . , an} is a basis of W with corresponding dual basis {α1, . . . , αn} of W ∗.

Finally, an element Dijβ
i ⊗ αj ∈ V ∗ ⊗ W ∗ may be viewed as a linear map

V ⊗W → R, that is as an element of (V ⊗W )∗ by

V ⊗W −→ R
Ck`bk ⊗ a` 7−→ DijC

k` βi(bk)︸ ︷︷ ︸
δik

αj(a`)︸ ︷︷ ︸
δj`

= DijC
k` .

�

Because of the identification Bil(V ×W,R) ∼= Lin(V ⊗W,R), sometimes one says
that “the tensor product linearizes what was bilinear or multilinear”.

2There is a way of defining the tensor product of vector spaces without involving bases, but
we will not do it here.





CHAPTER 6

Applications

6.1. Inertia tensor

6.1.1. Moment of inertia with respect to the axis determined by the
angular velocity. Let M be a rigid body fixed at a point O. The motion of this
rigid body at time t is by rotation by an angle θ with angular velocity ω about some
axis through O. The angular velocity has magnitude | · | or ‖ · ‖

|ω| =
∣∣∣∣dθdt
∣∣∣∣ ,

direction given by the axis of rotation and orientation by the right-hand rule. The
position vector of a point P in the body M relative to the origin O is

x =
−→
OP

while the linear velocity of a point P is

v = ω × x .

The linear velocity v has magnitude

|v| = |ω|︸︷︷︸
| dθdt |

|x| sinα︸ ︷︷ ︸
r

and direction tangent at P to the circle of radius r perpendicular to the axis of
rotation.

65
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P. r

a

v

.
om

O

x

The kinetic energy of an infinitesimal region dM of M around P is

dE =
1

2
v2dm ,

where v2 = v • v and dm is the mass of dM . The total kinetic energy of M is

E =
1

2

∫
M

v2dm =
1

2

∫
M

(ω × x)2dm .

Note that, depending on the type of the rigid body, we might take here the sum
of the integral, and what type of integral depends again from the kind of rigid body
we have. More precisely:

(1) If M is a solid in 3-dimensional space, then

E =
1

2

∫∫∫
M

(ωP × xP )2ρPdx
1dx2dx3 ,

where (ω × xP )2ρP is a function of P (x1, x2, x3).
(2) If M is a flat sheet in 3-dimensional space, then

E =
1

2

∫∫
M

(ωP × xP )2ρPdx
1dx2 .

(3) If M is a surface in 3-dimensional space, then

E =
1

2

∫∫∫
M

(ωP × xP )2ρPdσ ,

where dσ is the infinitesimal element of the surface for a surface integral.
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(4) If M is a wire in 3-dimensional space, then

E =
1

2

∫
M

(ωP × xP )2ρPds ,

where ds is the infinitesimal element of length for a line integral.
(5) If M is a finite set of point masses with rigid relative positions, then

E =
1

2

N∑
i=1

(ωP × xi)
2mi .

In any case we need to work out the quantity

(ω × x)2

for vectors ω and xi in 3-dimensional space.
To this purpose we use the Lagrange identity1, according to which

(a× b) · (c× d) = det

[
a · c a · d
b · c b · d

]
.(6.1)

Applying (6.1) with a = c = ω and b = d = x, we obtain

(ω × x)2 = (ω × x) · (ω × x) = det

[
ω · ω ω · x
x · ω x · x

]
= ω2x2 − (ω · x)2 .

Let now B = {e1, e2, e3} be an orthonormal2 basis of R, so that

ω = ωiei and x = xiei .

Then

ω2 = ω · ω = δijω
iωj = ω1ω1 + ω2ω2 + ω3ω3

x2 = x · x = δk`x
kx` = x1x1 + x2x2 + x3x3

ω · x = δikω
ixk

so that

(ω × x)2 = ω2x2 − (ω · x)2

= (δijω
iωj)(δk`x

kx`)− (δikω
ixk)(δjlω

jx`)

= (δijδk` − δikδj`)ωiωjxkx` .
Therefore the total kinetic energy is

E =
1

2
(δijδk` − δikδj`)ωiωj

∫
M

xkx`dm

and it depends only on ω1, ω2, ω3 (since we have integrated over the x1, x2, x3).

1The Lagrange identity can easily be proven in coordinates.
2We could use any basis of R3. Then, instead of the δij , the formula would have involved

the metric tensor gij . However computations with orthonormal bases are simpler. In addition
in this case we will see that the metric tensor is symmetric, and hence it admits an orthonormal
eigenbasis.
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Definition 6.1. The inertia tensor is the tensor whose components with respect
to an orthonormal basis B are

Iij = (δijδk` − δikδj`)
∫
M

xkx`dm .

Then the kinetic energy of the rotating rigid body is

E =
1

2
Iijω

iωj︸ ︷︷ ︸
Einstein
notation

=
1

2
ω · Iω︸ ︷︷ ︸
matrix

notation

.

One can check that

I11 =

∫
M

(x2x2 + x3x3)dm

I22 =

∫
M

(x1x1 + x3x3)dm

I33 =

∫
M

(x1x1 + x2x2)dm

I23 = I32 = −
∫
M

x2x3dm

I31 = I13 = −
∫
M

x1x3dm

I12 = I21 = −
∫
M

x1x2dm ,

so that with respect to the basis B, the metric tensor is represented by the symmetric
matrix

I =

I11 I12 I13

I21 I22 I23

I31 I32 I33

 .

We check only the formula for I11. In fact,

I11 = (δ11δk`︸ ︷︷ ︸
=0

unless
k=`

− δ1kδ1`︸ ︷︷ ︸
=0

unless
k=`=1

)

∫
M

xkx`dm

If k = ` = 1, then δ11δ11−δ11δ11 = 0, so that the non-vanishing terms have k = ` 6= 1.
So I11, I22, I33 are the moments of inertia of the rigid body M with respect to

the axes Ox1, Ox2, Ox3 respectively; I12, I23, I31 are the polar moments of inertia
or the products of inertia of the rigid body M .

Example 6.2. Find the inertia tensor of a homogeneous rectangular plate with sides
a and b and total mass m, assuming that the center of rotation O coincides with
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the center of inertia. We choose an orthonormal basis with e1 aligned with the side
of length a, e2 aligned with the side of length b and e3 perpendicular to the plate.

a

.
e1

e2

b

Since the plate is assumed to be homogeneous, it has a constant mass density
equal to

ρ =
total mass

area
=
m

ab
.

Denote by x, y and z the coordinates. Then

I11︸︷︷︸
Ixx

=

∫ a
2

−a
2

∫ b
2

− b
2

(y2 + z2︸︷︷︸
=0

) ρ︸︷︷︸
m
ab

dydx

=
m

ab
a

∫ b
2

− b
2

y2dy

=
m

b

[
y3

3

] b
2

− b
2

=
m

12
b2 .

Similarly

I22︸︷︷︸
Iyy

=
m

12
a2 ,

and

I33︸︷︷︸
Izz

=

∫ a
2

−a
2

∫ b
2

− b
2

(x2 + y2)ρ dydx =
m

12
(a2 + b2) ,

which turns out to be just the sum of I11 and I22.
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Furthermore,

I23 = I32 = −
∫ a

2

−a
2

∫ b
2

− b
2

y z︸︷︷︸
=0

ρdydx = 0 ,

and similarly I31 = I13 = 0. Finally

I21 = I21 = −
∫ a

2

−a
2

∫ b
2

− b
2

xyρdydx = −m
ab

(∫ a
2

−a
2

x dx

)
︸ ︷︷ ︸

=0

(∫ b
2

− b
2

y dy

)
︸ ︷︷ ︸

=0︸ ︷︷ ︸
because the integral of an odd function

on a symmetric interval is 0

.

We conclude that the inertia tensor is given by the matrix

m

12

b2 0 0
0 a2 0
0 0 a2 + b2

 . �

Exercise 6.3. Compute the inertia tensor of the same plate but now with center
of rotation O coinciding with a vertex of the rectangular plate.

6.1.2. Moment of inertia about any axis through the fixed point. We
compute the moment of inertia of the body M about an axis through O. Let p be
a unit vector defining an axis through O.

a

p

O.P x

r

.

The moment of inertia of an infinitesimal region of M around P is

dI = r2︸︷︷︸
r is the distance

from P to the axis

dm︸︷︷︸
infinitesimal

mass

= ‖p× x‖2dm ,
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where the last equality follows from the fact that ‖p× x‖ = ‖p‖ ‖x‖ sinα = r, since
p is a unit vector. Hence the total moment of inertia of M with respect to the
axis given by p is

I =

∫
M

‖p× x‖2dm ≥ 0 .

(This is very similar to the total kinetic energy E: just replace ω by p and omit the
factor 1

2
.) By the earlier computations, we conclude that

I = Iijp
ipj ,

where Iij is the inertia tensor. This formula shows that the total moment of inertia
of the rigid body M with respect to an arbitrary axis passing through the point O is
determined only by the inertia tensor of the rigid body.

Example 6.4. For the rectangular plate in Example 6.2, compute the moment of
inertia with respect to the diagonal of the plate.

a

.
O

b

Choose p = 1√
a2+b2

(ae1 + be2) (the other possibility is the negative of this vector).

So

p1 =
a√

a2 + b2
, p2 =

b√
a2 + b2

p3 = 0 .

The moment of inertia is

I =Iijp
ipj

=
(

a√
a2+b2

b√
a2+b2

0
)m

12
b2 0 0

0 m
12
a2 0

0 0 m
12

(a2 + b2)

 a√
a2+b2
b√

a2+b2

0


=
m

6

a2b2

a2 + b2
. �
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6.1.3. Moment of inertia with respect to an eigenbasis of the inertia
tensor. Observe that the inertia tensor is symmetric and recall the spectral the-
orem for symmetric matrices that we saw in Theorem 4.8. Let (ẽ1, ẽ2, ẽ3) be an
orthonormal basis for the inertia tensor of a rigid body M . Let I1, I2, I3 be the
corresponding eigenvalues of the inertia tensor. The matrix representing the inertia
tensor with respect to this eigenbasis isI1 0 0

0 I2 0
0 0 I3

 .

The axes of the eigenvectors ẽ1, ẽ2, ẽ3 are called the principal axes of inertia
of the rigid body M . The eigenvalues Ii are called the principal moments of
inertia.

The principal moments of inertia are the moments if inertia with respect to the
principal axes of inertia, hence they are non-negative

I1, , I2, , I3 ≥ 0 .

A rigid body is called

(1) an asymmetric top if I1 6= I2 6= I3 6= I1;
(2) a symmetric top if I1 = I2 6= I3: any axis passing through the plane

determined by e1 and e2 is a principal axis of inertia;
(3) a spherical top if I1 = I2 = I3: any axis passing through O is a principal

axis of inertia.

With respect to the eigenbasis {ẽ1, ẽ2, ẽ3} the kinetic energy is

E =
1

2
(I1(ω̃1)2 + I2(ω̃2)2 + I3(ω̃3)2) ,

where ω = ω̃iẽi, with ω̃i the components of the angular velocity with respect to the
basis {ẽ1, ẽ2, ẽ3}.

The surface determined by the equation (with respect to the coordinates x, y, z)

I1x
2 + I2y

2 + I3z
2 = 1

is called the ellipsoid of inertia. The symmetry axes of the ellipsoid coincide with
the principal axes of inertia. Note that for a spherical top, the ellipsoid of inertia is
actually a sphere.

The ellipsoid of inertia gives the moment of inertia with respect to any axis
as follows: Consider an axis given by the unit factor p and let q be a vector of
intersection of the axis with the ellipsoid of inertia.

q = cp

where c is the (signed) distance to O of the intersection of the axis with the ellipsoid
of inertia.
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O

axis
q

p

The moment of inertia with respect to this axis if

I = Iijp
ipj =

1

c2
Iijq

iqj =
1

c2
,

where the last equality follows from the fact that, since q is on the ellipsoid, then
Iijq

iqj = 1.

6.1.4. Angular momentum. Let M be a body rotating with angular velocity

ω about an axis through the point O. Let x =
−→
OP be the position vector of a point

P and v = ω × x the linear velocity of P .

v

.

a.
om

O

x

P
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Then the angular momentum of an infinitesimal region of M around P is

dL = (x× v)dm ,

so that the total angular momentum of M is

L =

∫
M

(x× (ω × x))dm .

We need to work out x× (ω×x) for vectors x and ω in three dimensional space.
It is easy to prove, using coordinates3, the equality

x× (ω × x) = ω(x • x)− x(ω • x) .(6.2)

Let B = {e1, e2, e3} be an orthonormal basis of R3. Then, replacing the following
equalities

ω = ωiei = δijω
jei(6.3)

x = xiei = δikx
kei(6.4)

x • x = δk`x
kx`(6.5)

ω • x = δj`ω
jx`(6.6)

into (6.2), we obtain

x× (ω × x) = δijω
jei︸ ︷︷ ︸

(6.3)

(δk`x
kx`︸ ︷︷ ︸

(6.5)

)− δikxkei︸ ︷︷ ︸
(6.4)

(δj`ω
jx`︸ ︷︷ ︸

(6.6)

) = (δijδk` − δikδj`)ωjxkx`ei .

Therefore the total angular momentum is

L = Liei ,

where the components Li are

Li = (δijδk` − δikδj`)ωj
∫
M

xkx`dm .

Since we restrict to orthonormal bases, we have always

δij = δij = δij =

{
1 if i = j

0 if i 6= j
.

Hence the above expression for Li can be written in terms of the inertia tensor Iij
as

Li = Iijω
j .

3Consider only the case in which x is a basis vector and use the linearity in ω.
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Example 6.5. Suppose the rectangular plate in the previous examples is rotating
about an axis through O with angular velocity

ω = e1 + 2e2 + 3e3 , or

ω1

ω2

ω3

 =

1
2
3

 .

Compute its angular momentum.
The inertia tensor is given by the matrix Iijm

12
b2 0 0

0 m
12
a2 0

0 0 m
12

(a2 + b2)

 .

The total angular momentum has components given bym
12
b2 0 0

0 m
12
a2 0

0 0 m
12

(a2 + b2)

1
2
3

 =

 m
12
b2

m
6
a2

m
4

(a2 + b2)

 =

L1

L2

L3

 ,

so that

L =
m

12
b2e1 +

m

6
a2e2 +

m

4
(a2 + b2)e3 .

6.2. Stress tensor (Spannung)

It was the concept of stress in mechanics that originally led to the invention of
tensors

tenseur

&&
stress

99

%%

tensor

tension

88

Let us consider a rigid body M acted upon by external forces but in static
equilibrium, and let us consider an infinitesimal region dM around a point P . There
are two types of external forces:

(1) The body forces, that is forces whose magnitude is proportional to the
volume/mass of the region. For instance, gravity, attractive force or the
centrifugal force.

(2) The surface forces, that is forces exerted on the surface of the element by
the material surrounding it. They are forces whose magnitude is propor-
tional to the area of the region in consideration.
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The surface force per unit area is called the stress. We will concentrate on homo-
geneous stress, that is stress that does not depend on the location of the element
in the body, but depends only on the orientation of the surface/plane. Moreover,
we assume that the body in consideration is in static equilibrium.

Choose an orthonormal basis {e1, e2, e3} and the plane π through P parallel to
the e2e3 coordinate plane. The normal to the plane is the vector e1. Let ∆A1 be
the area of the slice of the infinitesimal region around P cut by the plane and let
∆F be the force acting on that slice. We write ∆F in terms of its components

∆F = ∆F 1e1 + ∆F 2ee + ∆F 3e3

and, since we defined the stress to be the surface force per unit area, we define, for
j = 1, 2, 3,

σ1j := lim
∆A1→0

∆F j

∆A1

.

Similarly we can consider planes parallel to the other coordinate planes

p3

e1
e2

e3

P

P

P

p1

p2

and define

σij := lim
∆Ai→0

∆F j

∆Ai
.

It turns out that the resulting nine numbers σij form a contravariant 2-tensor called
the stress tensor. To see this, we compute the stress tensor across other slices
through P , that is other planes with other normal vectors. Let Π be a plane passing
through P , n the unit vector through P perpendicular to the plane π, ∆s = π∩dM
the area of a small element of the plane Π containing P and ∆F the force acting on
that element.

n

P

ds
pi

Claim 6.6. The stress at P across the surface perpendicular to n is

σ(n)
def
= lim

∆s→0

∆F

∆s
= σij(n • ei)ej .
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It follows from the claim that the stress σ is a vector valued function that depends
linearly on the normal n to the surface element, and we will see in § 6.2.3 that the
matrix σij of this linear vector valued function forms a second-order tensor.

Proof. Consider the tetrahedron OA1A2A3 formed by the triangular slice on
the plane Π having area ∆s and three triangles on planes parallel to the coordinate
planes

O

e1

e2

e3

a2

n

a1

a3

Consider all forces acting on this tetrahedron as a volume element of the rigid body.
There can be two types of forces:

(1) Body forces = f •∆v, where f is the force per unit of volume and ∆v is the
volume of the tetrahedron. We actually do not know these forces, but we
will see later that this is not relevant.

(2) Surface forces, that is the sum of the forces on each of the four sides of the
tetrahedron.

We want to assess each of the four surface contributions due to the surface forces.
If ∆s is the area of the slice on the plane Π, the contribution of that slice is

σ(n)∆s .

If ∆s1 is the area of the slice on the plane with normal −e1, the contribution of that
slice is

−σ1jej∆s1 ,

and similarly the contributions of the other two slices are

−σ2jej∆s2 and − σ3jej∆s3 .
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O

a2

n

a2 a2

a2

O

−e1

−e3

−e2

a3 a3

a3a3

a1 a1

a1
a1

O

O

Note that the minus sign comes from the fact that we use everywhere outside point-
ing normals.

So the total surface force is

σ(n)∆s− σ1jej∆s1 − σ2jej∆s2 − σ3jej∆s3 .

Since there is static equilibrium the sum of all (body and surface) forces must be
zero

f∆v + σ(n)∆s− σijej∆si = 0 .

The term f∆v can be neglected when ∆s is small, as it contains terms of higher
order (in fact ∆v → 0 faster than ∆s→ 0). We conclude that

σ(n)∆s = σijej∆si .

It remains to relate ∆s to ∆s1,∆s2,∆s3. The side with area ∆si is the orthogonal
projection of the side with area ∆s onto the plane with normal ei. The scaling
factor for the area under projection is cosαi, where αi is the convex angle between
the plane normal vectors

ai

n

ei

∆si
∆s

= cosαi = cosαi‖n‖ ‖ei‖ = n • ei .

Therefore

σ(n)∆s = σijej(n • ei)∆s
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or, equivalently,

σ(n) = σij(n • ei)ej .

�

Remark 6.7. (1) For homogeneous stress, the stress tensor σij does not depend
on the point P . However, when we flip the orientation of the normal to the
plane, the stress tensor changes sign. In other words, if σ(n) is the stress
across a surface with normal n, then

σ(−n) = −σ(n) .

The stress considers orientation as if the forces on each side of the surface
have to balance each other in static equilibrium.

−sn

−n

sn

n

(2) In the formula σ(n) = σij(n• ei)ej, the quantities n• ei are the coordinates
of n with respect to the orthonormal basis {e1, e2, e3}, namely

n = (n • e1)e1 + (n • e2)e2 + (n • e3)e3 = n1e1 + n2e2 + n3e3 .

Claim 6.8. The stress tensor is a symmetric tensor, that is σij = σji.

In fact, let us consider an infinitesimal cube of side ∆` surrounding P and with
faces parallel to the coordinate planes.

C’

e3

e1

e2

A B

CD

A’
B’

D’

The force acting on each of the six faces of the cube are:

• σ1j∆A1ej and −σ1j∆A1ej, respectively for the front and the back faces,
ABB′A′ and DCC ′D′;
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• σ2j∆A2ej and −σ2j∆A2ej, respectively for the right and the left faces
BCC ′B′ and ADD′A′;
• σ3j∆A3ej and −σ3j∆A3ej, respectively for the top and the bottom faces
ABCD and A′B′C ′D′,

where ∆A1 = ∆A2 = ∆A3 = ∆s = (∆`)2 is the common face area. We compute
now the torque µ, assuming the forces are applied at the center of the faces (whose
distance is 1

2
∆` to the center point P ). Recall that the torque is the tendency of a

force to twist or rotate an object.

µ =
∆`

2
e1 × σ1j∆s ej +

(
−∆`

2
e1

)
× (−σ1j∆s ej )

+
∆`

2
e2 × σ2j∆s ej +

(
−∆`

2
e2

)
× (−σ2j∆s ej )

+
∆`

2
e2 × σ3j∆s ej +

(
−∆`

2
e3

)
× (−σ3j∆s ej )

=∆`∆s (ei × σijej) =

=∆`∆s
(
(σ23 − σ32)e1 + (σ31 − σ13)e2 + (σ12 − σ21)e3

)
.

Since the equilibrium is static, then L = 0, so that σij = σji.
We can hence write

σ =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 ,

where the diagonal entries σ11, σ22 and σ33 are the normal components, that is the
components of the forces perpendicular to the coordinate planes and the remaining
entries σ12, σ13 and σ23 are the shear components, that is the components of the
forces parallel to the coordinate planes.

Since the stress tensor is symmetric, it can be orthogonally diagonalized, that is

σ =

σ1 0 0
0 σ2 0
0 0 σ3

 ,

where now σ1, σ2 and σ3 are the principal stresses, that is the eigenvalues of
σ. The eigenspaces of σ are the principal directions and the shear components
disappear for the principal planes.

6.2.1. Special forms of the stress tensor (written with respect to an
orthonormal eigenbasis or another special basis).
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• Uniaxial stress with stress tensor given byσ 0 0
0 0 0
0 0 0


Example 6.9. This is the stress tensor in a long vertical rod loaded by
hanging a weight on the end.

• Plane stressed state or biaxial stress with stress tensor given byσ1 0 0
0 σ2 0
0 0 0


Example 6.10. This is the stress tensor in plate on which forces are applied
as in the picture.

• Pure shear with stress tensor given by−σ 0 0
0 σ 0
0 0 0

 or

0 σ 0
σ 0 0
0 0 0

 .(6.7)

This is special case of the biaxial stress, in the case in which σ1 = σ2. In
(6.7) the first is the stress tensor written with respect to an eigenbasis, while
the second is the stress tensor written with respect to an orthonormal basis
obtained by rotating an eigenbasis by 45◦ about the third axis. In fact0 σ 0
σ 0 0
0 0 0

 =


√

2
2

√
2

2
0

−
√

2
2

√
2

2
0

0 0 1


︸ ︷︷ ︸

tL

−σ 0 0
0 σ 0
0 0 0


√

2
2
−
√

2
2

0√
2

2

√
2

2
0

0 0 1


︸ ︷︷ ︸

L

where L is the matrix of the change of coordinates.

• Shear deformation with stress tensor given by 0 σ12 σ13

σ12 0 σ23

σ13 σ23 0


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with respect to some orthonormal basis.

Fact 6.11. The stress tensor σ is a shear deformation if and only if its trace
is zero.

Example 6.12. The stress tensor 2 −4 0
−4 0 4
0 4 −2


represents a shear deformation. In fact one can check that

√
2

2
0

√
2

2
0 1 0

−
√

2
2

0
√

2
2


︸ ︷︷ ︸

tL

 2 −4 0
−4 0 4
0 4 −2


√

2
2

0 −
√

2
2

0 1 0√
2

2
0

√
2

2


︸ ︷︷ ︸

L

=

 0 0 −2

0 0 4
√

2

−2 4
√

2 0



• Hydrostatic pressure with stress tensor given by−p 0 0
0 −p 0
0 0 −p

 ,

where p 6= 0 is the pressure. Here all eigenvalues are equal to −p.

Example 6.13. Pressure of a fluid on a bubble.

Exercise 6.14. Any stress tensor can be written as the sum of a hydrostatic pressure
and a shear deformation. Hint: look at the next section.

6.2.2. Invariants. Let A be a 3× 3 matrix with entries aij. The characteristic
polynomial pA(λ) of A is invariant under a change of basis

pA(λ) = det(A− λI) = det

a11 − λ a12 a13

a21 a22 − λ a33

a31 a32 a33 − λ


=− λ3 + trAλ2 − . . .︸︷︷︸

quadratic expression
in the entries of A

λ+ detA .

Applying this to the stress tensor σ = A, we obtain some stress invariants, namely:

I1 = trσ = σ11 + σ22 + σ33

I2 =(σ12)2 + (σ23)2 + (σ13)2 − σ11σ22 − σ22σ33 − σ33σ11

I3 = detσ .

Since the characteristic polynomial is invariant under change of basis, the quantities
I1, I2 and I3 are also invariant.

The stress tensor can be expressed as the sum of 2 other stress tensors;
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• The hydrostatic tensor

πδij =

π 0 0
0 π 0
0 0 π

 ,

where π := I1/3 = (σ11 + σ22 + σ33)/3.
• The stress deviator tensor

sij := σij − πδij =

σ11 − π σ12 σ13

σ12 σ22 − π σ23

σ13 σ23 σ33 − π

 .

Remark 6.15. The hydrostatic pressure is generally defined as the negative one
third of the stress invariant I1, i.e. p = −π

Remark 6.16. The stress deviator tensor is a shear deformation since

tr(sij) = σ11 + σ22 + σ33 − 3π = 0.

Clearly

σij = sij + πδij

and hence the stress tensor is a sum of a shear deformation and a hydrostatic pressure
as claimed in Exercise 6.14.

6.2.3. Contravariance of the stress tensor. Let B = {e1, e2, e3} and B̃ =
{ẽ1, ẽ2, ẽ3} be two basis, and let

ẽi = Ljiej and ei = Λj
i ẽj ,(6.8)

where L := LB̃B is the matrix of the change of basis and Λ = L−1 is the inverse. Let
n be a given unit vector and σ the stress across a surface perpendicular to n. Then

σ can be expressed in two way, respectively with respect to B and to B̃

σ = σij(n • ei)ej(6.9)

σ = σ̃ij(n • ẽi)ẽj ,(6.10)

and we want to relate σij to σ̃ij. We start with the expression for S in (6.9) and
rename the indices for later convenience.

σ = σkm(n • ek)em = σkm(n • Λi
kẽi)(Λ

j
mẽj) = σkmΛi

kΛ
j
m(n • ẽi)ẽj ,

where in the second equality we used (6.8), and in the third we used linearity.
Comparing the last expression with the expression in (6.10) we obtain

σ̃ij = σkmΛi
kΛ

j
m ,

thus showing that σ is a contravariant 2-tensor or a tensor of type (0, 2).
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6.3. Strain tensor (Verzerrung)

Consider a slightly deformation of a body

disp

.

.

.

.
squigarrow

Pt

Pt

P1t

dxt

du

P

P1
P1t

dx

P1

P

disp1

We have

∆x̃ = ∆x+ ∆u ,

where ∆x is the old relative position of P and P1, ∆x̃ is their new relative position
and ∆u is the difference of the displacement, which hence measures the deformation.

Assume that we have a small homogeneous deformation, that is

∆u = f(∆x) ;

in other words f is a small linear function independent of the point P . If we write
the components of ∆u and ∆x with respect to an orthonormal basis {e1, e2, e3}, the
function f will be represented by a matrix with entries that we denote by fij,

∆ui = fij∆x
j .

The matrix (fij) can be written as a sum of a symmetric and an antisymmetric
matrix as follows:

fij = εij + ωij ,

where

εij =
1

2
(fij + fji)
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is a symmetric matrix and is called the strain tensor or deformation tensor and

ωij =
1

2
(fij − fji)

is an antisymmetric matrix called the rotation tensor. We try to understand now
where these names come from.

Remark 6.17. First we verify that a (small) antisymmetric 3× 3 matrix represents
a (small) rotation in 3-dimensional space.

Fact 6.18. Let V be a vector space with orthonormal basis B = {e1, e2, e3}, and let

ω =

ab
c

. The matrix of the linear map V → V defined by v 7→ ω× v with respect

to the basis B is  0 −c b
c 0 −a
−b a 0

 .

In fact

ω × v =

ab
c

×
xy
z

 = det

e1 e2 e3

a b c
x y z


=

bz − cycx− az
ay − bx

 =

 0 −c b
c 0 −a
−b a 0

xy
z

 .

Note that the matrix (ωij) =

 0 ω12 −ω13

−ω12 0 ω23

ω13 −ω23 0

 corresponds to the cross

product with the vector ω =

−ω23

−ω13

−ω12

. �

The antisymmetric case. Suppose that the matrix (fij) was already antisymmet-
ric, so that

ωij = fij and εij = 0 .

By the Fact 6.18, the relation

∆ui = fij∆x
j(6.11)

is equivalent to

∆u = ω ×∆x ,

so that

∆x̃ = ∆x+ ∆u = ∆x+ ω ×∆x .
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When ω is small, this represents an infinitesimal rotation of an angle ‖ω‖ about the
axis Oω.

a

r

dx dxt

O

o

In fact, since ω ×∆x is orthogonal to the plane determined by ω and by ∆x, it
is tangent to the circle with center along the axis Oω and radius determined by ∆x.
Moreover,

‖∆u‖ = ‖ω ×∆x‖ = ‖ω‖ ‖∆x‖ sinα︸ ︷︷ ︸
r

,

and hence, since the length of an arc of a circle of radius r corresponding to an angle
θ is rθ, infinitesimally this represents a rotation by an angle ‖ω
.

The symmetric case. The opposite extreme case is when the matrix fij was
already symmetric, so that

εij = fij and ωij = 0 .

We will see that it is εij that encodes the changes in the distances: in fact,

‖∆x̃‖2 = ∆x̃ •∆x̃ = (∆x+ ∆u) • (∆x+ ∆u)

= ∆x •∆x+ 2∆x •∆u+ ∆u •∆u

' ‖∆x‖2 + 2εij∆x
i∆xj ,

(6.12)

where in the last step we neglected the term ‖∆u‖2 since it is small compared to
∆u when ∆u→ 0 and used (6.11).

Remark 6.19. Even when fij is not purely symmetric, only the symmetric part εij
is relevant for the distortion of the distances. In fact, if ωij is antisymmetric, the
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term 2ωij∆x
i∆xj = 0, so that

‖∆x̃‖2 ' ‖∆x‖2 + 2fij∆x
i∆xj = ‖∆x‖2 + 2εij∆x

i∆xj . �

Recall that a metric tensor (or inner product) encodes the distances among
points. It follows that a deformation changes the metric tensor. Let us denote by
g the metric before the deformation and by g̃ the metric after the deformation. By
definition we have

‖∆x̃‖2 def
= g̃(∆x̃,∆x̃) = g̃ij∆x̃

i∆x̃j = g̃ij(∆x
i + ∆ui)(∆xj + ∆uj)(6.13)

and

‖∆x‖2 def
= g(∆x,∆x) = gij∆x

i∆xj .(6.14)

For infinitesimal deformations (that is if ∆u ∼ 0), (6.13) becomes

‖∆x̃‖2 = g̃ij∆x
i∆xj .

This, together with (6.14) and (6.12), leads to

g̃ij∆x
i∆xj ' gij∆x

i∆xj + 2εij∆x
i∆xj

and hence

εij '
1

2
(g̃ij − gij) ,

that is εij measures the change in the metric.
By definition the strain tensor εij is symmetric

E =

ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 ,

where the terms on the diagonal (in green) determine the elongation or the contrac-
tion of the body along the coordinate directions e1, e2, e3, and the terms above the
diagonal (in orange) are the shear components of the strain tensor; that is εij is
the movement of a line element parallel to Oej towards Oei. Since it is a symmetric
tensor it can be orthogonally diagonalizedε1 0 0

0 ε2 0
0 0 ε3

 ,

The eigenvalues of E are the principal coefficients of the deformation and the
eigenspaces are the principal directions of the deformation.
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6.3.1. Special forms of the strain tensor.

(1) Shear deformation when E is traceless

tr E = ε11 + ε22 + ε33 = 0 .

(2) Uniform compression when the principal coefficients of E are equal (and
nonzero) k 0 0

0 k 0
0 0 k


Exercise 6.20. Any strain tensor can be written as the sum of a uniform
compression and a shear deformation.

6.4. Elasticity tensor

The stress tensor represents an external exertion on the material, while the strain
tensor represents the material reaction to that exertion. In crystallography these are
called field tensors because they represent imposed conditions, opposed to matter
tensors, that represents material properties.

Hooke’s law says that, for small deformations, stress is related to strain by a
matter tensor called elasticity tensor or stiffness tensor

σij = Eijk`εkl ,

while the tensor relating strain to stress is the compliance tensor

εk` = Sijk`σ
ij .

The elasticity tensor has rank 4, and hence in 3-dimensional space it has 34 = 81
components. However symmetry reduces the number of independent components
for Eijk`.

(1) Minor symmetries: The symmetry of the stress tensor

σij = σji

implies that

Eijk` = Ejik` for each k, ` ;

it follows that for each k, ` fixed there are only 6 independent components
Eijk` E11k` E12k` E13k`

E12k` E22k` E23k`

E13k` E23k` E33k` .


Having taken this in consideration, the number of independent components
decreases to 6 × 32 at the most. However the symmetry also of the strain
tensor

εk` = ε`k
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implies that

Eijk` = Eij`k for each i, j .

This means that for each i, j fixed there are also only 6 independent com-
ponents Eijk`, so that Eijk` has at most 62 = 36 independent components.

(2) Major symmetries: Since (under appropriate conditions) partial derivatives
commute, if follows from the existence of a strain energy density functional
U satisfying

∂2U

∂εij∂εk`
= Eijk`

that

Eijk` = Ek`ij ,

that means the matrix with rows labelled by (i, j) and columns labelled by
(k, `) is symmetric. Since from (1) that there are only 6 entries (i, j) for
a fixed (k, `), Eijk` can be written in a 6× 6 matrix with rows labelled by
(i, j) and columns labelled by (k, `)

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗


so that Eijk` has in fact only 6 + 5 + 4 + 3 + 2 + 1 = 21 components.

6.5. Conductivity tensor

Consider a homogeneous continuous crystal. Its properties can be divided into
two classes:

• Properties that do not depend on a direction, and are hence described by
scalars. Examples are density and heat capacity.
• Properties that depends on a direction, and are hence described by tensors.

Examples are elasticity, electrical conductivity and heat conductiv-
ity. We say that a crystal is anisotropic when it has such “tensorial”
properties.

6.5.1. Electrical conductivity. Let E be the electric field and J the electrical
current density. We assume that these are constant throughout the crystal. At each
point of the crystal:

(1) E gives the electric force (in Volts/m) that would be exerted on a positive
test charge (of 1 Coulomb) placed at the point;
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(2) J (in Amperes/m2) gives the direction the charge carriers move and the
rate of electric current across an infinitesimal surface perpendicular to
that direction.

J is a function of E,

J = f(E) .

Consider a small increment ∆J in J caused by a small increment ∆E in E, and write
these increments in terms of their components with respect to a chosen orthonormal
basis {e1, e2, e3}.

∆J = ∆J iei and ∆E = ∆Eiei .

The increments are related by

∆J i =
∂f i

∂Ej
∆Ej + higher order terms in (∆Ej)2, (∆Ej)2, . . .

If the quantities ∆Ej are small, we can assume that

∆J i =
∂f i

∂Ej
∆Ej(6.15)

If we assume that ∂f i

∂Ej
is independent of the point of the crystal,

∂f i

∂Ej
= κij ∈ R

we obtain the relation

∆J i = κij∆E
j

or simply

∆J = κ∆E ,

where κ if the electrical conductivity tensor. This is a (1, 1)-tensor and may
depend4 on the initial value of E, that is the electrical conductivity may be different
for small and large electric forces. If initially E = 0 and κ0 is the corresponding
electrical conductivity tensor, we obtain the relation

J = κ0E

that is called the generalized Ohm law. This is always under the assumption that
∆E and ∆J are small and that the relation is linear.

The electrical resistivity tensor is

ρ = κ−1 ,

that is, it is the (1, 1)-tensor such that

ρjiκ
`
j = δ`i .

4Typically if the dependence between E and J is linear for any value, and not only for small
ones, the tensor ail not depend on the initial value of E.
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The electrical conductivity measures the material’s ability to conduct an electrical
current, while the electrical resistivity quantifies the ability of the material to oppose
the flow of the electrical current.

For an isotropic crystal, all directions are equivalent and these tensors are spher-
ical

κji = kδji and ρji =
1

k
δji ,(6.16)

where k is a scalar, called the electrical conductivity of the crystal. Equa-
tion (6.16) can also be written ask 0 0

0 k 0
0 0 k

 and

 1
k

0 0
0 1

k
0

0 0 1
k

 .

In general, κji is neither symmetric nor antisymmetric (and actually symmetry does
not even make sense for a (1, 1) tensor unless a metric is fixed, since it does require
a canonical identification of V with V ∗).

6.5.2. Heat conductivity. Let T be the temperature and H the heat flux vec-
tor. For a homogeneous crystal and constant H and for a constant gradient of T ,
Fourier heat conduction law says that

H = −K gradT .(6.17)

At each point of the crystal:

(1) gradT points in the direction of the highest ascent of the temperature and
measures the rate of increase of T in that direction. The minus sign in (6.17)
comes from the fact that the heat flows in the direction of the decreasing
temperature.

(2) H measure the amount of heat passing per unit area perpendicular to its
direction per unit time.

Here K is the heat conductivity tensor or thermal conductivity tensor. In
terms of components with respect to a chosen orthonormal basis

H i = −Kij(gradT )j .

Exercise 6.21. Verify that the gradient of a real function is a covariant 1-tensor.

The heat conductivity tensor is a contravariant 2-tensor and experiments show
that it is symmetric and hence can be orthogonally diagonalized. The heat resis-
tivity tensor is

r = K−1 ,
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and hence is also symmetric. With respect to an orthonormal basis, K is represented
by K1 0 0

0 K2 0
0 0 K3

 ,

where the eigenvalues of K are called the principal coefficients of heat conduc-
tivity.

Physical considerations (that is the fact that heat flows always in the direction
of decreasing temperature) show that the eigenvalues are positive

Ki > 0 .

The eigenspaces of K are called the principal directions of heat conductivity.
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Solutions

Exercise 2.4 (1) yes; (2) no, (3) no, (4) yes, (5) no, (6) yes.

Exercise 2.14

(1) The vectors in B span V since[
a b
c −a

]
= a

[
1 0
0 −1

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
.

Moreover they are linearly independent since

a

[
1 0
0 −1

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
=

[
0 0
0 0

]
if and only if [

a b
c −a

]
=

[
0 0
0 0

]
,

that is if and only if a = b = c = 0.

(2) B is a basis of V , hence dimV = 3. Since B̃ has three elements, it is enough
to check either that it spans V or that it consists of linearly independent
vectors. We will check this last condition. In fact

a

[
1 0
0 −1

]
+ b

[
0 −1
1 0

]
+ c

[
0 1
1 0

]
=

[
0 0
0 0

]
⇐⇒

[
a c− b

b+ c −a

]
=

[
0 0
0 0

]
that is 

a = 0

b+ c = 0

c− b = 0

⇐⇒


a = 0

b = 0

c = 0

(3) [
2 1
7 −2

]
= 2

[
1 0
0 −1

]
+ 1

[
0 1
0 0

]
+ 7

[
0 0
1 0

]
,

therefore

[v]B =

2
1
7

 .

93
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To compute the coordinates of v with respect to B̃ we need to find a, b, c ∈ R
such that[

2 1
7 −2

]
= a

[
1 0
0 −1

]
+ b

[
0 −1
1 0

]
+ c

[
0 1
1 0

]
.

Similar calculations to the above ones yield

[v]B̃ =

2
3
4

 .

Exercise 3.2: (1) no; (2) no; (3) yes.

Exercise 3.3: (1) yes; (2) yes; (3) no.

Exercise 3.11:

Exercise 3.18: (1) yes; (2) yes; (3) yes; (4) no, because v×w is not a real number;
(5) yes.

Exercise 4.2: (1) yes, this is the standard inner product; (2) no, as ϕ is nega-
tive definite, that is ϕ(v, v) < 0 if v ∈ V , v 6= 0; (3) no, as ϕ is not symmetric; (4)
yes.

Exercise 4.3:

(1) Yes, in fact:

(a)
∫ 1

0
p(x)q(x)dx =

∫ 1

0
q(x)p(x)dx because p(x)q(x) = q(x)p(x);

(b)
∫ 1

0
(p(x))2dx ≥ 0 for all p ∈ R[x]2 because (p(x))2 ≥ 0, and

∫ 1

0
(p(x))2dx =

0 only when p(x) = 0 for all x ∈ [0, 1], that is only if p ≡ 0.

(2) No, since
∫ 1

0
(p′(x))2dx = 0 implies that p′(x) = 0 for all x ∈ [0, 1], but p is

not necessarily the zero polynomial.
(3) Yes
(4) No. Is there p ∈ R[x]2, p 6= 0 such that (p(1))2 + (p(2))2 = 0?
(5) Yes. Is there a non-zero polynomial of degree 2 with 3 distinct zeros?

Exercise 4.11. We write

[v]B̃ =

ṽ1

ṽ2

ṽ3

 and [w]B̃ =

w̃1

w̃2

w̃3


and we know that g with respect to the basis B̃ has the standard form g(v, w) = ṽiw̃i

and we want to verify (4.6) using the matrix of the change of coordinates L−1 = Λ.
If

[v]B =

v1

v2

v3

 and [w]B =

w1

w2

w3


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then we have that ṽ1

ṽ2

ṽ3

 = Λ

v1

v2

v3

 =

v1 − v2

v2 − v3

v3


and w̃1

w̃2

w̃3

 = Λ

w1

w2

w3

 =

w1 − w2

w2 − w3

w3


It follows that

g(v, w) = ṽiw̃i = (v1 − v2)(w1 − w2) + (v2 − v3)(w2 − w3) + v3w3

= v1w1 − v1w2 − v2w1 + 2v2w2 − v2w3 − w3v2 + 2v3w3 .

Exercise 4.14 With respect to B̃, we have

‖v‖ = (12 + 12 + 12)1/2 =
√

3

‖w‖ = ((−1)2 + (−1)2 + 32)1/2 =
√

11

and with respect to E
‖v‖ = (3 · 3− 3 · 2− 2 · 3 + 2 · 2 · 2− 2 · 1− 1 · 2 + 2 · 1 · 1)1/2 =

√
3

‖w‖ = (1 · 1− 1 · 2− 2 · 1 + 2 · 2 · 2− 2 · 3− 3 · 2 + 2 · 3 · 3)1/2 =
√

11 .

Exercise: 4.25. Saying that the orthogonality is meant with respect to g, means
that we have to show that g(v − projbkv, bk) = 0. In fact,

g(v − projbkv, bk) = g(v − g(v, bk)

g(bk, bk)
bk, bk) = g(v, bk)−

g(v, bk)

���
��g(bk, bk)
���

��g(bk, bk) = 0


