1. Show that the image of a representation of dimension 1 of a finite group is a cyclic group.

Solution Let G be a finite group. A representation of dimension 1 of G is an homomorphism $\rho : G \to GL_1(\mathbb{C})$. The group $GL_1(\mathbb{C})$ coincides with the multiplicative group \mathbb{C}^\times. Let z be an element in the image of ρ. Since G is finite, we get that $z^n = 1$ for some n, in particular the image of ρ is a subgroup of the group S^1 of complex numbers of modulus one. We saw in class that all finite subgroups of S^1 are cyclic and this finishes the proof.

2. Let H be a subgroup of index 2 of a group G, and let $\sigma : H \to GL(V)$ be a representation. Let a be an element in G not in H. Define a conjugate representation $\sigma' : H \to GL(V)$ by the rule $\sigma'(h) = \sigma(a^{-1}ha)$. Prove that

(a) σ' is a representation of H.

Solution In order to check that σ' is well defined, let us notice that, since H has index 2 in G, H is normal, hence for every element $h \in H$ the element $a^{-1}ha$ still belongs to H, in particular the value $\sigma(a^{-1}ha)$ is well defined. Let us now check that σ' is a representation. In order to do this, it is enough to verify that σ' is an homomorphism in GL_n for some n. In particular, since σ is a representation in $GL(V)$, the image of σ' is also contained in $GL(V)$, hence we only have to verify that $\sigma'(gh) = \sigma'(g)\sigma'(h)$. But this follows from the definition:

$$\sigma'(gh) = \sigma(a^{-1}gha) = \sigma((a^{-1}ga)(a^{-1}ha)) = \sigma(a^{-1}ga)\sigma(a^{-1}ha) = \sigma'(g)\sigma'(h).$$

(b) If σ is the restriction to H of a representation of G then σ' is isomorphic to σ.

Solution Assume that σ is the restriction of a representation of G, and let $A \in GL(V)$ be the element $\sigma(a)$. In order to show that σ and σ' are conjugate we need a linear isomorphism $L : V \to V$ such that, for any $h \in H$, $\sigma(h)(Lv) = L(\sigma'(h)v)$. The linear map A is such an isomorphism, indeed for any $v \in V$:

$$\sigma(h)Av = AA^{-1}\sigma(h)Av = A\sigma(a^{-1})\sigma(h)\sigma(a)v = A\sigma(a^{-1}ha) = A\sigma(h)v.$$

(c) If b is another element of G not in H, then the representation $\sigma'' = \sigma(b^{-1}hb)$ is isomorphic to σ'.

Solution Since b is another element of G that doesn’t belong to H, and since
H has index 2 in G, then there exists an element h in H such that $b = ah$. Now we have, for every $g \in H$, that $\sigma''(g) = \sigma(h^{-1}a^{-1}gah) = \sigma(h^{-1})\sigma'(g)\sigma(h)$. In particular this implies that, for every $g \in H$, we have $\sigma(h)\sigma''(g) = \sigma'(g)\sigma(h)$ and the linear map $\sigma(h) : V \rightarrow V$ gives an isomorphism of the representations σ' and σ''.

3. Let $\rho : G \rightarrow \text{GL}(V)$ be a representation of a finite group on a real vector space V. Prove the following:

(a) There exists a G-invariant, positive definite, symmetric form \langle , \rangle on V.

Solution Let us fix a positive definite, symmetric bilinear form $[,]$ on V. (To find such a form it is enough to fix an isomorphism of V with \mathbb{R}^n and consider the standard positive definite symmetric bilinear form on \mathbb{R}^n). And let us define the averaged form by setting

$$\langle v, w \rangle = \frac{1}{|G|} \sum_{g \in G} [\rho(g)v, \rho(g)w].$$

The form is symmetric, positive definite and G-invariant. The fact that is symmetric follows from the fact that $[,]$ is symmetric:

$$\langle v, w \rangle = \frac{1}{|G|} \sum_{g \in G} [\rho(g)v, \rho(g)w] = \frac{1}{|G|} \sum_{g \in G} [\rho(g)w, \rho(g)v] = \langle v, w \rangle.$$

To check that the form is positive, it is enough to check that $\langle v, v \rangle > 0$, but we have

$$\langle v, v \rangle = \frac{1}{|G|} \sum_{g \in G} [\rho(g)v, \rho(g)v] > 0$$

since the latter expression is a sum of positive numbers, the verification of the G invariance follows rearranging the summation, once one notices that for any element $h \in G$, the right multiplication by h gives a permutation of G:

$$\langle \rho(h)v, \rho(h)w \rangle = \frac{1}{|G|} \sum_{g \in G} [\rho(g)\rho(h)v, \rho(g)\rho(h)w]$$

$$= \frac{1}{|G|} \sum_{gh \in G} [\rho(gh)v, \rho(gh)w] = \langle v, w \rangle.$$

(b) ρ is a direct sum of irreducible representations.

Solution If ρ is irreducible, there is nothing to prove. Assume that ρ is not irreducible and let $W < V$ a ρ-invariant subspace. We claim that the orthogonal of W with respect to the form \langle , \rangle defined in the previous part is also ρ-invariant. Indeed it is enough to check that if $z \in W^\perp$ and $g \in G$, then $\rho(g)z$ is in W^\perp, or equivalently for every $w \in W$ $\langle \rho(g)z, w \rangle = 0$. But this is true since

$$\langle \rho(g)z, w \rangle = \langle \rho(g^{-1})\rho(g)z, \rho(g^{-1})w \rangle = \langle z, \rho(g^{-1})w \rangle = 0$$
Here the first equality is due to the fact that \(\langle , \rangle \) is \(\rho \)-invariant, the second one to the fact that \(\rho \) is a representation, the third to the fact that \(\rho(g^{-1})w \in W \) since \(W \) is \(G \)-invariant, and \(z \) belongs to \(W^\perp \). This implies that \(\rho \) splits as a direct sum of two representations \(\rho', \rho'' \). Since \(V \) is finite dimensional the conclusion follows by induction.

4. Let us consider the representation \(\rho \) of \(\mathbb{Z} \) on \(\mathbb{C}^2 \) defined by \(\rho(1) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \).

(a) Find a proper invariant subspace.

Solution Clearly the subspace of \(\mathbb{C}^2 \) generated by the first element of the standard basis is invariant under the representation \(\rho \): indeed any element in \(\langle e_1 \rangle \) has expression \([a] \) for some \(a \in \mathbb{C} \), and for any \(n \in \mathbb{Z} \), we have that \(\rho(n) \) is the matrix \(\begin{bmatrix} 1 & n \\ 1 & 1 \end{bmatrix} \) and we have \(\begin{bmatrix} 1 & n \\ 1 & 1 \end{bmatrix} [a] = [a] \).

(b) Show that \(\rho \) is not the direct sum of irreducible representations.

Solution Assume by contradiction that \(\rho \) is the direct sum of irreducible representations. Then there would exist another vector \(w \in \mathbb{C}^2 \) that doesn’t belong to \(\langle e_1 \rangle \), and such that, for every \(n \in \mathbb{Z} \), \(\rho(n)w = w \). But since already \(\rho(1) \) has no other eigenvector apart from \(e_1 \) this is clearly not possible.

5. Determine the character table for the Klein four group.

Solution The Klein four group \(K \) is isomorphic to the product \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \). Since it is abelian its conjugacy classes coincides with the four group elements. Let us call \(a \) and \(b \) the generators of \(K \). In order to compute the character table for \(K \) it is enough to determine four distinct non isomorphic one dimensional representations of \(K \). If \(\rho \) is a one dimensional representation of \(K \), the image of a generator of \(K \) should be an element of order two in \(\mathbb{C}^\times \), in particular it should be an element of the set \(\{ \pm 1 \} \). Moreover for any choice we get a non isomorphic representation of \(K \). This implies that the character table of \(K \) is

\[
\begin{array}{cccc}
 & 1 & a & b & ab \\
\rho_1 & 1 & 1 & 1 & 1 \\
\rho_a & 1 & -1 & 1 & -1 \\
\rho_b & 1 & 1 & -1 & -1 \\
\rho_{ab} & 1 & -1 & -1 & 1 \\
\end{array}
\]

6. Let us consider the Dihedral group \(D_5 \), and its cyclic subgroup \(C_5 \).

(a) Determine the character table of \(D_5 \) and of \(C_5 \).

Solution Let \(\omega \) denote a primitive fifth root of unit in \(\mathbb{C}^\times \) that is a number such that \(\omega^5 = 1 \). There are five conjugacy classes in \(C_5 \), corresponding to the five elements. Moreover in order to determine a representation of \(C_5 \) it is enough to describe the image of the generator that is going to be a fifth root of unity, hence a power of \(\omega \). In particular we get that the character table of \(\mathbb{C}^5 \) is
In order to compute the conjugacy classes in D_5 let us notice that, since 5 is odd, all reflections are conjugate, hence form a conjugacy class C_y, moreover the rotations come in three different conjugacy classes: $\{1\}, \{x, x^4\}, \{x^2, x^3\}$. This implies that we have to exhibit five different irreducible representations of D_5. We will denote by ρ_1 the trivial representation. Let us consider the subgroup C_5 of D_5. It is a normal subgroup and the quotient $D_5/C_5 = \mathbb{Z}/2\mathbb{Z}$. This gives another one dimensional (hence irreducible) representation of D_5, the sign representation. We will denote it by sign.

Let us now consider the standard representation of D_5 as a subgroup of $O_2(\mathbb{R})$. We showed in class that the group D_5 is isomorphic to the subgroup of $O_2(\mathbb{R})$ generated by a reflection and a rotation of angle $2\pi/5$. The matrix expression for a rotation of angle $2\pi/5$ is $R_x = \begin{bmatrix} \cos(2\pi/5) & \sin(2\pi/5) \\ -\sin(2\pi/5) & \cos(2\pi/5) \end{bmatrix}$ and the matrix expression for the reflection along the x axis is $R_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Interpreting these two matrices as complex matrices, and letting them act on \mathbb{C}^2 we get a complex representation of D_5 that we will denote by ρ_ω. It is well known that if ω can be chosen to be $\cos(2\pi/5) + i \sin(2\pi/5)$. In particular it is easy to compute the character of ρ_ω (see the table below). Since the character has norm one, we get that the representation is irreducible. The last irreducible representation ρ_{ω^2} of D_5 is obtained in a similar manner, by defining $\rho_{\omega^2}(y) = R_y$ and $\rho_{\omega^2}(x) = R_x^2$. Computing the character of this representation one can easily check that ρ_{ω^2} is irreducible and ρ_{ω^2} is not isomorphic to ρ_ω. This leads to the character table for D_5.

<table>
<thead>
<tr>
<th>D_5</th>
<th>${1}$</th>
<th>${x, x^4}$</th>
<th>${x^2, x^3}$</th>
<th>C_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>sign</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>ρ_ω</td>
<td>2</td>
<td>$\omega + \overline{\omega}$</td>
<td>$\omega^2 + \overline{\omega^2}$</td>
<td>0</td>
</tr>
<tr>
<td>ρ_{ω^2}</td>
<td>2</td>
<td>$\omega^2 + \overline{\omega^2}$</td>
<td>$\omega + \overline{\omega}$</td>
<td>0</td>
</tr>
</tbody>
</table>

(b) Decompose the restriction of each irreducible character of D_5 into irreducible characters of C_5.

Solution The restriction to C_5 of the characters of ρ_1 and sign equal to the trivial character, the character of ρ_ω is the sum of the characters of τ_ω and τ_{ω^4}, in a similar way ρ_{ω^2} is the direct sum of τ_{ω^2} and τ_{ω^3}.

7. The Quaternion group Q is the group $Q = \langle i, j, k \mid i^2 = j^2 = k^2 = -1, ijk = -1 \rangle$
(a) Find a subgroup of $GL_2(\mathbb{C})$ isomorphic to Q, determine the order of Q.

Solution Let us consider the elements of $GL_2(\mathbb{C})$ $I = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$, $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $K = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$. We have $I^2 = -\text{Id}$, $J^2 = -\text{Id}$, $K^2 = -\text{Id}$, moreover $IKJ = \begin{bmatrix} i & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} = -\text{Id}$. In particular the subgroup Q can be realized as a subgroup of $GL_2(\mathbb{C})$ and has eight elements: $\{\pm \text{Id}, \pm I, \pm J, \pm K\}$.

(b) Determine the conjugacy classes of Q.

Solution We will now identify Q with the subgroup of $GL_2(\mathbb{C})$ we just defined, to make explicit computations. Since the matrices $\pm \text{Id}$ commute with every matrix in $GL_2(\mathbb{C})$, in particular they commute with the elements in Q, hence they are in the center of Q. Moreover, from the fact that $I^2 = -1$ we get that $I^{-1} = -I$. We can now compute the relation $IJ^{-1} = -[i 0] [0 1] [i 0] = -J$. Analogously one gets that $KJ^{-1} = -J$, in particular the conjugacy class of J contains the two elements $\pm J$. In the same way one checks that the conjugacy class of I contains $\pm I$ and the conjugacy class of K contains $\pm K$.

(c) Prove that any subgroup of Q is normal.

Solution The computation above shows that the subgroup generated by I is isomorphic to $\mathbb{Z}/4\mathbb{Z}$ and is normal and the same is true for $\langle J \rangle$ and $\langle K \rangle$. The only other non trivial subgroup is the center $\{\pm 1\}$ of Q and clearly the center is normal.

(d) Write the character table of Q.

Solution In order to compute the character table we need to find 5 irreducible representations of Q, since there are 5 conjugacy classes. Of course there is the trivial representation, that we will denote by ρ_1. Moreover we saw above that the subgroup generated by I is normal. Since the quotient Q/I is $\mathbb{Z}/2\mathbb{Z}$ we get a representation ρ_i obtained by composing the sign representation of $\mathbb{Z}/2\mathbb{Z}$ with the quotient map. In the very same way (quotienting the subgroup generated respectively by J and K) one gets the representations ρ_j and ρ_k. All the representations ρ_1, ρ_i, ρ_j and ρ_k are one dimensional, hence irreducible, moreover computing the characters it is easy to see that they are not isomorphic, since the characters are different. We realized Q as a subgroup of $GL_2(\mathbb{C})$. This gives a two dimensional representation ρ of Q. That is irreducible since the eigenspaces of I and J are distinct. We can sum up the results we just obtained in the character table for Q:

<table>
<thead>
<tr>
<th>Q</th>
<th>${1}$</th>
<th>${-1}$</th>
<th>${\pm i}$</th>
<th>${\pm j}$</th>
<th>${\pm k}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ρ_i</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>ρ_j</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>ρ_k</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>ρ</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>