Serie 14 (Ferienserie)

1. Berechne den Rang der folgenden Matrizen:

a)
$$A = \begin{pmatrix} 1 & 0 & 2 & -1 & -4 & 0 \\ 0 & 1 & -1 & -1 & 2 & 1 \\ 1 & 0 & 2 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 & 2 & -1 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

b)
$$B = \begin{pmatrix} 2 & 5 & -3 & 0 \end{pmatrix}$$

2. Man berechne die Inverse der Matrix

$$\begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{pmatrix}.$$

3. Sei V der Vektorraum der reellen Polynome vom Grad kleiner oder gleich 2. Definiere $V^* := \operatorname{Hom}(V, \mathbb{R})$ als den Vektorraum der linearen Abbildungen von V nach \mathbb{R} . Seien die Vektoren $\phi_1, \phi_2, \phi_3, \phi_4$ in V^* gegeben durch

$$\phi_1(p) := p(0),$$

$$\phi_2(p) := p'(0) + p(0),$$

$$\phi_3(p) := \frac{p''(0)}{2} + p'(0) + p(0) \ (= p(1)),$$

$$\phi_4(p) := \int_{-1}^{1} p(t) dt$$

für $p \in V$.

- **a)** Zeige, dass ϕ_1, ϕ_2, ϕ_3 eine Basis von V^* ist.
- **b)** Schreibe ϕ_4 als Linearkombination der Vektoren ϕ_1, ϕ_2, ϕ_3 .

Die folgenden Aufgaben sind als Spassund Repetitionsaufgaben gedacht.

- **4.** Sei $S \subset V$ ein minimales Erzeugendensystem, d. h.
 - (i) $\operatorname{Span}(S) = V$,
 - (ii) Für alle $t \in S$ gilt $\operatorname{Span}(S \setminus \{t\}) \neq V$.

Zeige direkt aus den Definitionen, dass S eine Basis von V ist.

- 5. Seien $0 \le n \le N$. Wieviele n-dimensionale Unterräume von $(\mathbb{F}_2)^N$ gibt es?
- **6.** Welche der folgenden Abbildungen sind \mathbb{R} -linear?
 - a) $C^0(\mathbb{R}) \longrightarrow \mathbb{R}$,

$$f \longmapsto f(0) + \int_{-1}^{1} f(x) e^{x^2} dx,$$

b)
$$C^0((0,\infty)) \longrightarrow C^0((0,\infty)), \qquad f \longmapsto \Big(x \longmapsto x f(1/x)\Big),$$

c)
$$C^0(\mathbb{R}/2\pi\mathbb{Z}) \longrightarrow \mathbb{R},$$

$$f \longmapsto \int_{f(0)-\frac{\pi}{2}}^{f(0)+\frac{\pi}{2}} f(2x) dx.$$

(Mit $C^0(Z)$ wird der Raum der stetigen reellwertigen Funktionen auf Z bezeichnet.)

7. Sei f ein Endomorphismus des endlichdimensionalen Vektorraums V.

Beweise: Ist jeder Unterraum $U \subseteq V$ invariant unter f (d.h. $f(U) \subseteq U$), so ist f ein Vielfaches der Identität.

a) Es seien a, b und c drei paarweise verschiedene, komplexe Zahlen. Bestimme den Rang der Matrix

$$\begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix}.$$

b) Errate einen Satz, der dieses Resultat verallgemeinert, und beweise den Satz.

- **9.** Zeige, dass für eine nilpotente Matrix $N \in \mathbb{K}^{n \times n}$ gilt:
 - **a)** $N^n = 0$,
 - **b)** I + N ist invertierbar.
- **10.** a) Gib eine lineare Abbildung $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ an, so dass $\varphi^n = 0$, aber $\varphi^{n-1} \neq 0$.
 - **b)** Gib für jedes $2 \le k \le n$ eine lineare Abbildung $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ an, so dass $\varphi^k = \operatorname{Id} \operatorname{gilt}$, aber $\varphi^\ell \ne \operatorname{Id} \operatorname{für alle} \ell \in \{1, \ldots, k-1\}$.
- 11. a) Zeige: Falls $a \neq c$ ist, so gilt für jede positive ganze Zahl m

$$\left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right)^m = \left(\begin{array}{cc} a^m & \frac{b(a^m - c^m)}{a - c} \\ 0 & c^m \end{array} \right) .$$

- **b**) Leite eine analoge Formel für den Fall a = c her.
- 12. Seien $\mathcal{B}:=(\sin,\cos,\sin\cdot\cos,\sin^2,\cos^2)$ und $V:=\operatorname{Span}(\mathcal{B})\subseteq\mathbb{R}^\mathbb{R}$. Betrachte den Endomorphismus

$$D: V \to V, \ u \mapsto u'.$$

- a) Zeige, dass \mathcal{B} eine Basis von V ist.
- **b**) Bestimme die Abbildungsmatrix A von D bezüglich \mathcal{B} .
- c) Betrachte die 5×5 -Matrix A als lineare Abbildung $A : \mathbb{R}^5 \to \mathbb{R}^5$ und berechne deren Kern und Bild.
- **d**) Was sind die entsprechenden Untervektorräume in V?
- 13. (Hill-Chiffrierung über $\mathbb{Z}/n\mathbb{Z}$) In einem auf Lester S. Hill zurückgehenden Chiffrierverfahren aus dem Jahre 1929 werden die Buchstaben A-Z wie folgt durch Elemente aus $\mathbb{Z}/26\mathbb{Z}$ codiert.

A	В	С	D	Е	F	G	Н	I	J	K	L	M	
1	2	3	4	5	6	7	8	9	10	11	12	13	
N	О	P	Q	R	S	T	U	V	W	X	Y	Z	
14	15	16	17	18	19	20	21	22	23	24	25	26	

In der einfachsten Variante der Hill-Chiffrierung werden sukzessive *Paare* von Symbolen wie folgt verschlüsselt.

- 1. Wähle eine 2×2 -Matrix A mit Einträgen aus $\mathbb{Z}/26\mathbb{Z}$ (die zur Ermöglichung einer späteren Dechiffrierung gewisse zusätzliche Eigenschaften haben sollte).
- 2. Gruppiere den Quelltext in *Buchstabenpaare* (unter Hinzufügung eines beliebigen Zeichens am Textende bei ungerader Quelltextlänge).
- 3. Betrachte die numerischen Werte x_1, x_2 jedes der gebildeten Zeichenpaare als zweielementigen Spaltenvektor x und berechne den *numerischen Codevektor* Ax modulo 26.
- 4. Der Empfänger konvertiert den numerischen Codevektor zurück in ein Buchstabenpaar.

Beispiel: Sei A die Matrix

$$\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$$
.

Der Text "I AM HIDING" wird (durch Hinzufügen von G am Ende) in die Paare

gruppiert. Es gilt nun beispielsweise

$$A \begin{pmatrix} 9 \\ 1 \end{pmatrix} = \begin{pmatrix} 11 \\ 3 \end{pmatrix}, A \begin{pmatrix} 13 \\ 8 \end{pmatrix} = \begin{pmatrix} 29 \\ 24 \end{pmatrix} = \begin{pmatrix} 3 \\ 24 \end{pmatrix}.$$

Als Chiffrierfolge ergibt sich insgesamt schliesslich KCCXQLKPUU.

a) Zeige: Falls eine Matrix $B \in (\mathbb{Z}/26\mathbb{Z})^{2\times 2}$ existiert mit

$$BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

dann kann B zum Dechiffrieren einer Nachricht benutzt werden.

b) Bestimme die Dechiffriermatrix $B \in (\mathbb{Z}/26\mathbb{Z})^{2 \times 2}$ zu der Chiffriermatrix

$$A = \begin{pmatrix} 5 & 6 \\ 2 & 3 \end{pmatrix}.$$

c) Entziffere damit unter der Verwendung von Matlab die Zeichenfolge HNSBGAAKTFWKDXEZGFXWYHEYZCWBUUIODWRR.

Abgabe: Keine.