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Exercise 4-1

Let (Ω,F , (Fk)k=0,...,T ,P) be a filtered probability space with F0 P-trivial and S̄ = (1, S) =

(1, S1
k , . . . , S

d
k)k=0,...,T a discrete-time model with finite time horizon T ∈ N. Assume that S

satisfies NA. Let H = (Hk)k=0,...,T be an American option and U : [0,∞)→ [0,∞) an increasing,
concave (utility) function. For k ∈ {0, . . . , T}, denote by Sk,T the set of all stopping times with
values in {k, . . . , T}. Suppose that the buyer of the American option wants to choose a stopping
time τ∗0 ∈ S0,T which is optimal in the sense that it maximises his expected utility E[U(Hτ )] from
the attained payoff among all stopping times τ ∈ S0,T . Assume that supτ∈S0,T E[U(Hτ )] < ∞
and define the process V = (V k)k=0,...,T via backward recursion by

V T := U(HT ) and V k = max
(
U(Hk),E[V k+1|Fk]

)
, k = T − 1, . . . , 0.

Moreover, for k ∈ {0, . . . , T}, define the stopping time

τ∗k := inf{t ∈ {k, . . . , T} : V t = U(Ht)}.

(a) Show that for k ∈ {0, . . . , T}, V τ∗k is a P-martingale on {k, . . . , T}. Deduce that

E[U(Hτ∗k
) | Fk] = ess sup

τ∈Sk,T
E[U(Hτ ) | Fk] P-a.s., k = 0, . . . , T.

Hint: Use the identity V k = ess supτ∈Sk,T E[U(Hτ ) | Fk] P-a.s. for k = 0, . . . , T from the
lecture.

(b) Suppose now that the market S is complete and that P is the unique martingale measure
for S. Show that there exists a predictable process ϑ = (ϑ1k, . . . , ϑ

d
k)k=1,...,T such that

V 0 + ϑ • Sτ∗0 = U(Hτ∗0
) P-a.s.



Exercise 4-2

Let (Ω,F , (Fk)k=0,...,T ,P) be a filtered probability space with F0 P-trivial and S̄ = (1, S) =

(1, S1
k , . . . , S

d
k)k=0,...,T a discrete-time model with time horizon T ∈ N. Assume that S satisfies

NA and that the market S is complete, i.e., there exists a unique equivalent martingale measure
Q ≈ P on FT for S. For k ∈ {0, . . . , T}, denote by Sk,T the set of all stopping times with values
in {k, . . . , T}. Let (Hk)k=0,...,T be an American option, which is uniformly bounded. Assume
that the American option is traded at time 0 at a price of SH0 ≥ 0. We say that there is a buyer
arbitrage for H if there exist a predictable process ϑ = (ϑ1k, . . . , ϑ

d
k)k=1,...,T , a constant c > 0 and

a stopping time τ ∈ S0,T such that

ϑ • Sτ + c(Hτ − SH0 ) ≥ 0 P-a.s. and P[ϑ • Sτ + c(Hτ − SH0 ) > 0] > 0.

Similarly, we say that there is a seller arbitrage for H if there exist a predictable process
ϑ = (ϑ1k, . . . , ϑ

d
k)k=1,...,T and a constant c < 0 such that for all stopping times τ ∈ S0,T ,

ϑ • Sτ + c(Hτ − SH0 ) ≥ 0 P-a.s. and P[ϑ • Sτ + c(Hτ − SH0 ) > 0] > 0.

We say that SH0 is an arbitrage-free price for the American option if there exists neither a buyer
nor a seller arbitrage for H.

(a) Show that there exists a buyer arbitrage for H if and only if SH0 < supτ∈S0,T EQ[Hτ ].

Hint: For “⇐”, use Exercise 4-1 (b).

(b) Show that there exists a seller arbitrage for H if and only if SH0 > supτ∈S0,T EQ[Hτ ].

Remark: The above results show that supτ∈S0,T EQ[Hτ ] is the unique arbitrage-free price for H.

Exercise 4-3

Let (Ω,F ,P) be a filtered probability space supporting a Brownian motion W = (Wt)t≥0.
Denote by (FW

t )t≥0 the natural completed filtration of W . Let σ > 0 and 0 < r < σ2

2 . Consider
an undiscounted Black-Scholes-type market (S̃0, S̃1) = (S̃0

t , S̃
1
t )t≥0 given by the SDEs

dS̃0
t = rS̃0

t dt, S̃0
0 = 1, and dS̃1

t = S̃1
t (r dt+ σ dWt), S̃1

0 = s > 0.

Denote by S1 := S̃1

S̃0
the discounted stock price. Then P is the unique equivalent (local) martin-

gale measure for S1. Denote by S0,∞ the set of all P-a.s. finite stopping times. The arbitrage-free
price of a perpetual American put option on S̃1 with strike K > 0 is given by

v(s) := sup
τ∈S0,∞

E

[
(K − S̃1

τ )+

S̃0
τ

]
.

(a) For L ∈ (0,K) define the stopping time

τL := inf{t ≥ 0 : S̃t ≤ L}

and set

vL(s) = E

[
(K − S̃1

τL
)+

S̃0
τL

]
.



Show that

vL(s) =

{
K − s, 0 < s ≤ L,
(K − L)

(
s
L

)− 2r
σ2 , s > L.

Hint: Use without proof that the stopping time σa,b := inf{t ≥ 0 : Wt ≤ −a + bt}, where
a, b > 0, has the Laplace transform

E[exp(−λσa,b)] = exp
(
−a(

√
b2 + 2λ− b)

)
, λ ≥ 0.

(b) Show that there exists a unique L∗ ∈ (0,K) such that vL∗(s) ≥ vL(s) for all L ∈ (0,K)
and all s ∈ (0,∞). In particular, show that vL∗(s) ≥ (K − s)+ for all s ∈ (0,∞).

Hint: Define the function g : (0,K) → (0,∞) by g(L) := (K − L)L
2r
σ2 , and show that

it has a unique global maximum L∗ on (0,K). In addition, for L ∈ (0,K), define the
function hL : (0,∞) → (0,∞) by hL(s) = s−

2r
σ2 g(L), show that hL∗(L∗) = K − L∗ and

h′L∗(L
∗) = −1, and use that hL is strictly convex for all L ∈ (0,K).

(c) Show that the process Ṽ = (Ṽt)t≥0 defined by Ṽt := exp(−rt)vL∗(S̃t), t ≥ 0, is a P-
supermartingale. Deduce that τL∗ satisfies

E

[
(K − S̃1

τL∗
)+

S̃0
τL∗

]
= sup

τ∈S0,∞
E

[
(K − S̃1

τ )+

S̃0
τ

]
.

Hint: First, show that vL∗ is in C1((0,∞)) ∩ C2((0,∞) \ {L∗}) and satisfies

−rvL∗(s) + rsv′L∗(s) +
1

2
σ2s2v′′L∗(s) ≤ 0, s ∈ (0,∞) \ {L∗}.

Next, use without proof that if S is a strictly positive semimartingale and f : (0,∞)→ R
is in C1((0,∞)) and there exists a finite set A ⊂ (0,∞) such that f ∈ C2((0,∞) \ A)
and f ′′1{f /∈A} is bounded on compact sets, then f(S) is again a semimartingale and Itô’s
formula holds with f ′′ replaced by f ′′1{f /∈A}.

Exercise 4-4

Let (Ω,F , (Fk)k=0,1,P) be a filtered probability space and S̄ = (1, S1
k , . . . , S

d
k)k=0,1 a one-period

model. Assume that F0 = {∅,Ω} and that S is non-redundant in the sense that for each
ϑ ∈ Rd, we have ϑtr∆S1 = 0 P-a.s. if and only if ϑ = 0. Let U : (0,∞) → R be a utility
function (without Inada conditions), i.e., U is strictly increasing, strictly concave and in C1. Set
U(0) := limt↓↓0 U(t) ∈ [−∞,∞) and U(∞) := limt↑↑∞ U(t) ∈ (−∞,+∞]. For x ≥ 0, set

A(x) := {ϑ ∈ Rd : x+ ϑtr∆S1 ≥ 0 P-a.s.},
u(x) := sup

ϑ∈A(x)
E[U(x+ ϑtr∆S1)],

where E[U(x+ ϑtr∆S1)] := −∞ if U(x+ ϑtr∆S1)
− /∈ L1(P).

(a) Fix x ≥ 0. Show that the set A(x) is compact if and only if S satisfies NA.
Hint: For “⇐”, argue by contradiction and assume that there exists a sequence (ϑn)n∈N
in A(x) \ {0} such that limn→∞ ‖ϑn‖∞ = +∞. For n ∈ N, set ηn := ϑn

‖ϑn‖∞ , consider the
sequence (ηn)n∈N and use non-redundancy of S.



(b) Suppose that Si1 ∈ L1(P) for i ∈ {1, . . . , d} and U(∞) = +∞. Fix x > 0. Show that
u(x) <∞ if and only if S satisfies NA.
Hint: For “⇐”, construct Y ∈ L1(P) such that U(x+ ϑtr∆S1) ≤ Y P-a.s. for all ϑ ∈ A(x)
using concavity of U and part (a).

(c) Suppose that Si1 ∈ L1(P) for i ∈ {1, . . . , d} and that S satisfies NA. Fix x > 0. Show that
there is a unique ϑ∗ ∈ A(x) such that

E[U(x+ (ϑ∗)tr∆S1)] = u(x) <∞.

Hint: Use parts (a) and (b) and Fatou’s lemma. Moreover, use without proof that U is
strictly concave on [0,∞) in case that U(0) > −∞.

Exercise 4-5

Consider the same setup and notation as in Exercise 4-4. Assume that U(0) > −∞, that S
satisfies NA and that Si1 ∈ L1(P) for i ∈ {1, . . . , d}. Fix x > 0 and assume that the unique
ϑ∗ ∈ A(x) satisfying E[U(x+ (ϑ∗)tr∆S1)] = u(x) <∞ is in the interior of A(x).

(a) Fix z ≥ 0. Using only the concavity property, show that the function

y 7→ U(y)− U(z)

y − z
, y ∈ (0,∞) \ {z},

is decreasing.

Remark: This shows in particular that U ′(0) := limh↓↓0
U(h)−U(0)

h ∈ (0,+∞] is well defined.

(b) Show that U ′
(
x+ (ϑ∗)tr∆S1

)
<∞ P-a.s., that

U ′
(
x+ (ϑ∗)tr∆S1

)
∆Si1 ∈ L1(P), i ∈ {1, . . . , d},

and derive the first-order condition

E[U ′(x+ (ϑ∗)tr∆S1)∆S
i
1] = 0, i ∈ {1, . . . , d}.

Hint: Let η ∈ Rd \ {0}, and consider the limit

lim
ε↓↓0

U(x+ (ϑ∗ + εη)tr∆S1)− U(x+ (ϑ∗)tr∆S1)

ε

using part (a).

(c) Show that there exists an equivalent martingale measure Q ≈ P on F1 for S with density

dQ

dP
=

U ′(x+ (ϑ∗)tr∆S1)

E[U ′(x+ (ϑ∗)tr∆S1)]
.

Remark: The above result is a constructive proof of the Dalang-Morton-Willinger theorem
in our setup.


