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Exercise 6-1

Let (2, 7,P) be a probability space supporting a Brownian motion W = (W}),c[o,7]- Denote
by (ﬁtw)te[o,T} the natural (completed) filtration of W. Let ¢ > 0 and u,r € R. Consider the
undiscounted Black-Scholes market (S, 51) = (S0, gtl)te[O,T] given by the SDEs

A4S =rS%dt, SY=1, and dS} =S} (pdt+odW,), Si=s>0.

Denote by St := g—; the discounted stock price and by R = (Rt)te[o,T] the returns process of S*,
e, Ry = (u—r)t+ oW, t € [0,T]. Let U : R — R be given by U(z) = —exp(—ax), where
a > 0. Set

A:= {9 € L(S") : 98" > —a for some a > 0},

i.e., the set of all strategies whose risky position ¥S' is uniformly bounded from below. For
r € R, we consider the problem of maximising expected utility from final wealth (in units of S°),
i.e., we seek ¥ € A such that

E[U (Vi (z,93)] = sup BU (Vi (2,9))] = u(x) < .

It turns out to be convenient to reformulate this problem a bit. To this end, set
A :={peL(R): ¢ > —a for some a >0} and V'(z,p):=xz+¢peR, xz€R,p€L(R).

Then u(z) = sup,e 4 E[U (V] (, )] and ¢} is an optimiser of the reformulated problem if and

only if ¥} = ‘g—:f is an optimiser of the original problem. Finally, to use the tools from stochastic

optimal control, set

At ) :={p e A" = on [0,1]}, te[0,T),pc A,
Jiz(@) = esssup E[U(Vp(z, )| Fl, tel0,T],zeR,pec A
PeA (tp)

(a) Make the ansatz that there exists a real-valued function v in C12([0, T) x R)NC?([0, T] xR)
such that J; (@) = v(t, V/(z,¥)). Argue that v should satisfy the HJB equation

1
v (t, ) + sup <p(,u —r)vg(t,x) + 2p202vm(t,x)> =0, te[0,T),z€eR,
PER

(%)
v(T,z) =U(z), z€R.

Hint: Apply Ito’s formula and the martingale optimality principle.



(b) Assume that v(t,-) is strictly concave for all ¢ € [0,7"). Use this to find a real-valued
function p* in CY([0,T) x R) such that for each ¢t € [0,T), z € R,

sup (pli = 0. + 52070 0,2) ) = 9 (12) = )l ) + 5 (1.2) P ,2)

and deduce that under the strict concavity assumption, () is equivalent to

(1 —=1)? (v2)*
202 Upy

0=uv; — in [0,7) x R and o(T,:)=U(-) onR. ()

(c) Show that the ansatz of part (a) implies that v(¢,z) = exp(—ax)w(t) for some real-valued
function w in C1([0, 7)) N C°([0,T]). Use this to solve the PDE (xx) explicitly, and deduce
that p*(t,2) = 5,1 € [0,T), z € R,

(d) For x € R, set ¢} := ¢* := £—. Using without proof that indeed J; »(¢) = v(t, V/(x, »))
for all t € [0,7], z € R and ¢ € A’, show that ¢* is an optimiser of the reformulated
problem, and thus ¥}, := 9" = S—j is an optimiser of the original problem.

Hint: Apply the the martingale optimality principle.

Exercise 6-2

Let (2, 7, (Zt)iejo,1), P) be a filtered probability space and W = (W})icpo a Brownian motion
for (F1)iecpo,r)- Let (1,5) = (1, St)eepo,r) be a Bachelier market, i.e., Sy = So+ut+oWy, t € [0,T],
where o > 0, p € R and Sy = s > 0. Then S = Sy + M + \e (M), where M = oW and A\ = L.

(el

Set © = L2(M). We consider the particular problem of finding the optimal strategy 9* € © such
that
E[(1 = Vr(0,97))"] = inf E[(1 - V1r(0,9))7].

For t € [0,T] and y € L?(%;, P), define J}(y) as in the lecture and recall that
JH(y) = ary® = 2bey + ¢, t €0, T,

where a = (ar)iepo,1], 0 = (b)refo,r] and ¢ = (¢t)sejo,r) are semimartingales and satisfy the BSDEs

a \ 2
day = a4 ()\ + > d(M)¢ + v dM; + dLY, ar =1, (A)
Qy—
db; = <>\ + a”t ) (Aby— + ) (M )y + vP dM; + dL, br = 1; (B)
t_
Abs b\2
dey = (taJ”’t) d(M); + dNY, cr =1, (C)
t_

a b 2
where 1%, 17 € Lj, .

local P-martingale.
(a) Find a strong solution (a,v%, L% b,v?, L, ¢, N¢) for the BSDEs (A) — (C).

Hint: Using that (M) is deterministic, try to find a solution such that a, b and ¢ are
deterministic. Moreover, first solve (A) and (B) and then (C).

(M), L* L* are local P-martingales strongly orthogonal to M, and N€ is a

(b) Find a strong solution X* to the SDE

by b a
dx; = <t+”t —X; (/\+ Vt)) s, X =0,

Qi — ag—

and deduce that X* = ¢* ¢ S, where ;7 = AE(—Xe S), t € [0,T].



()

Show that ¥* € © = L?(M) and that it is indeed optimal.

Hint: For the first claim, argue that it suffices to show that A&(—AM) € L?(M). For the
second claim, use the martingale optimality principle and calculate J} (V;(0,9*)), t € [0, T,
explicitly.

Exercise 6-3

Consider the same setup as in Exercise 6-2. We now consider an investor who wants to invest into
the market (1,.9) by choosing a strategy ¥ € © = L?(M). For ¥ € ©, denote by ay := E[J e Sr]

the return and by By := /Var[¢ e S7] the volatility of 0.

(a)

(b)

Let 9* = AE(—X o S) be as in Exercise 6-2. Set a* := ay- and §* := fBy«. Show that

By > p*  for all ¥ € © satistying ay = ™.

Show that

2
ay < ﬁﬁ\/exp <52T> —1 forallv e 0.

Moreover, show that if u # 0, then for each a > 0, there exists 9, such that

2
oy, = and Yo — exp Ly
B9 o?

Hint: Show that g—: = ,/exp (%T) —1.

Exercise 6-4

Let (Q,.%#,P) be a probability space, Y := L*°(%,P) and p : Y — R a map. We consider
different properties/axioms for p:

Monotonicity (M): p(Y!) < p(Y?) for all Y!,Y? € Y with Y > Y? P-aus.
Translation invariance (T): p(Y +¢) =p(Y) —cforall Y € Y and ¢ € R.
Subadditivity (S): p(Y' +Y?2) < p(Y)) 4+ p(Y?) forall Y1, Y2 € Y.
Positive homogeneity (PH) p(A\Y) = Ap(Y) for all Y € Y and A > 0.

Convexity (C): p(A\Y! + (1 = N\)Y2) < Ap(Y1) + (1 — N)p(Y?) for all Y1, Y2 € Y and
A€ 0,1].
Quasi-convexity (QC): p(A\Y!+ (1 —-A)Y?) < max(p(Y1), p(Y?)) for all Y1, Y2 € Y and
A€ 0,1].
Show that if p satisfies (M) and (T), then p is Lipschitz continuous with respect to || - || oo

Show that if p satisfies (T), then it satisfies (C) if and only if it satisfies (QC).
Hint: For “<=", show that A, :={Y € Y : p(Y) < 0} is a convex set.

Show that if p satisfies (M), (T), (S) and (C) and p(0) = 0, then it also satisfies (PH).

Hint: First, using (S) and (C) show by induction that p(AY) = Ap(Y) for all Y € Y and
all rational A > 0. Then, use part (a).



Exercise 6-5

Let (Q2,.%,P) be a probability space, Y := L'(.#,P) and o € (0,1) a fixed sensitivity parameter.
We consider the following maps )V — R:

e Value at Risk (VaR,): VaR,(Y) :=sup{y : P[Y < —y] > a}.
e Average Value at Risk (AVaR,): AVaR,(Y) := 1 Jy VaR,(Y) du.

e Tail Conditional Expectation (TCE,): TCE,(Y) :=Ep[-Y | — Y > VaR,(Y)].

e Worst Conditional Expectation (WCE,):
WCE,(Y) :=sup{Ep[-Y | 4] : A € F with P[A] > a}.

One can show that AVaR,, admits a dual characterisation

AVaR,(Y) = sup Eq[-Y], Y e,
QEeQn

where

Q= {QEM?:Sggi IP—a.s.}.

Moreover, by arguing as in the lecture, one can show that both AVaR,, and WCE,, are coherent
risk measures on .
(a) Show that for all Y € Y,
AVaR,(Y) > WCE,(Y) > TCE,(Y) > VaR,(Y),

and that the first two inequalities are equalities in case that Y has a continuous distribution.

Hint: For the first inequality, use the dual characterisation of AVaR,. For the second
inequality, argue that P[-Y > VaR,(Y) — €] > « for all € > 0. For the last statement,
use without proof that if Y has a continuous distribution Fy, then there exists a random
variable U which is uniformly distributed on (0,1) such that Y = ¢;-(U) P-a.s., where

q;i(u) =inf{y € R: Fy(y) > u}, u € (0,1), is the upper quantile function of Y.
(b) Calculate VaR,(—Y) and AVaR,(—Y'), where Y is
(i) exponentially distributed with rate parameter A > 0,

(ii) Pareto distributed with parameter 5 > 1, i.e.,

Boy>1,

y P,
]P[YZy]Z{l g <1

(iii) lognormally distributed with parameters p € R and o > 0.



