Mathematical Finance

Solution Sheet 2

Solution 2-1

(a) Define

$$k^* := \min \left\{ k \in \{1, \dots, N\} : G_{\tau_k}(\vartheta) \in L^0_+ \setminus \{0\} \right\},$$
 (1)

and set $\sigma_0 := \tau_{k^*-1}$ and $\sigma_1 := \tau_{k^*}$. Moreover, set

$$h := \begin{cases} h^{k^*} & \text{if } \mathbb{P}[G_{\tau_{k^*-1}}(\vartheta) = 0] = 1, \\ h^{k^*} \mathbb{1}_{\{G_{\tau_{k^*-1}}(\vartheta) < 0\}} & \text{if } \mathbb{P}[G_{\tau_{k^*-1}}(\vartheta) = 0] < 1. \end{cases}$$
 (2)

Note that $\mathbb{P}[G_{\tau_{k^*-1}}(\vartheta) < 0] > 0$ in the second case by the definition of k^* . We claim that $\vartheta^* := h \mathbb{1}_{\llbracket \sigma_0, \sigma_1 \rrbracket} \in \mathbf{b} \mathcal{E}$ is an arbitrage opportunity. Indeed, in the first case,

$$G_T(\vartheta^*) = G_{\tau_{k^*}}(\vartheta) - G_{\tau_{k^*-1}}(\vartheta) = G_{\tau_{k^*}}(\vartheta) \in L^0_+ \setminus \{0\}, \tag{3}$$

and in the second case,

$$G_{T}(\vartheta^{*}) = (G_{\tau_{k^{*}}}(\vartheta) - G_{\tau_{k^{*}-1}}(\vartheta)) \mathbb{1}_{\{G_{\tau_{k^{*}-1}}(\vartheta) < 0\}}$$

$$\geq -G_{\tau_{k^{*}-1}}(\vartheta) \mathbb{1}_{\{G_{\tau_{k^{*}-1}}(\vartheta) < 0\}} \in L^{0}_{+} \setminus \{0\}.$$
(4)

(b) Let a>0 be such that $G(\vartheta)\geq -a$ \mathbb{P} -a.s. By right-continuity of the paths of $G(\vartheta)$, it suffices to show $G_t(\vartheta)\geq -c$ \mathbb{P} -a.s. for all $t\in [0,T)$. Seeking a contradiction, assume there is $t\in [0,T)$ such that $\mathbb{P}[G_t(\vartheta)<-c]>0$. But then $\vartheta^*:=\vartheta\mathbb{1}_{\{G_t(\vartheta)<-c\}\times(t,T]}$ is predictable, in L(S) and satisfies

$$G(\vartheta^*) = (G(\vartheta) - G_t(\vartheta)) \mathbb{1}_{\{G_t(\vartheta) < -c\} \times (t,T]} \ge -a + c,$$

$$G_T(\vartheta^*)_T = (G_T(\vartheta) - G_t(\vartheta)) \mathbb{1}_{\{G_t(\vartheta) < -c\}} \ge (-c - G_t(\vartheta)) \mathbb{1}_{\{G_t(\vartheta) < -c\}}$$
(5)

But this shows both that ϑ^* is admissible and that S fails NA, in contradiction to the hypothesis.

(a) First, assume that S is bounded. Note that then every simple strategy is admissible. Moreover, S is a uniformly integrable \mathbb{Q} -martingale if and only if $\mathbb{E}_{\mathbb{Q}}[S_{\tau} - S_0] = 0$ for all stopping times (taking values in [0,T]). So let τ be an arbitrary stopping time, and consider the simple strategies $\vartheta := \mathbb{1}_{[0,\tau]}$ and $-\vartheta$. Using that \mathbb{Q} is an equivalent separating measure for S then gives

$$0 \ge \mathbb{E}_{\mathbb{Q}}[\vartheta \bullet S_T] = \mathbb{E}_{\mathbb{Q}}[S_\tau - S_0] = -\mathbb{E}_{\mathbb{Q}}[-(S_\tau - S_0)] = -\mathbb{E}_{\mathbb{Q}}[(-\vartheta) \bullet S_T] \ge 0.$$
 (6)

Next, consider the case that S is locally bounded. Then there exists an increasing sequence of stopping times $(\sigma_n)_{n\in\mathbb{N}}$ taking values in [0,T] with $\lim_{n\to\infty}\mathbb{P}[\sigma_n=T]=1$ such that S^{σ_n} is bounded for all $n\in\mathbb{N}$. It suffices to show that for each $n\in\mathbb{N}$, S^{σ_n} is a uniformly integrable Q-martingale. To this end, fix $n\in\mathbb{N}$. It suffices to show that for each stopping time τ with $\tau\leq\sigma_n$ \mathbb{P} -a.s., $\mathbb{E}_{\mathbb{Q}}[S_{\tau}-S_0]=0$. So let τ be such a stopping time, and consider as above the simple strategies $\vartheta:=\mathbb{1}_{\mathbb{Q},\tau\mathbb{Z}}$ and $-\vartheta$. Then both strategies are admissible since S is bounded on $[0,\sigma_n]$ and $\tau\leq\sigma_n$ \mathbb{P} -a.s., and the same argument as in the first step gives $\mathbb{E}_{\mathbb{Q}}[S_{\tau}-S_0]=0$.

(b) By assumption, there exist a strictly positive predictable process $\psi = (\psi_t)_{t \in [0,T]}$, an \mathbb{R}^d -valued (local) Q-martingale M, and an \mathbb{R}^d -valued \mathscr{F}_0 -measurable random vector S_0 such that $S = S_0 + \psi \bullet M$. Let $\vartheta \in \Theta_{\text{adm}}$. Then by the associativity of the stochastic integral, $G(\vartheta) = \vartheta \bullet S = (\vartheta \psi) \bullet M$. Moreover, as $(\vartheta \psi) \bullet M$ is uniformly bounded from below by admissibility, it is a local Q-martingale by the Ansel-Stricker theorem. By Fatou's lemma, it is then also a Q-supermartingale, and hence

$$\mathbb{E}_{\mathbb{Q}}[G_T(\vartheta)] \le \mathbb{E}_{\mathbb{Q}}[G_0(\vartheta)] = 0. \tag{7}$$

(c) First, since \mathscr{F}_t is \mathbb{P} -trivial for all $t \in [0,T)$, a process $\xi = (\xi_t)_{t \in [0,T]}$ is adapted if and only if it is deterministic on [0,T) and ξ_T is $\sigma(X)$ -measurable. In particular, all left-continuous and adapted processes for the filtration $(\mathscr{F}_t)_{t \in [0,T]}$ are deterministic, and by a monotone class argument, the same is true for all predictable processes.

Next, if $\vartheta \in L(S)$ is arbitrary, then

$$G_T(\vartheta) = \vartheta \bullet S_T = \vartheta \bullet S_{T-} + \vartheta_T \Delta S_T = \lim_{t \uparrow T} \vartheta \bullet S_t + \vartheta_T X = 0 + \vartheta_T X = \vartheta_T X.$$
 (8)

Since ϑ_T is deterministic and X normally distributed, it follows that $\vartheta \in \Theta_{\text{adm}}$ if and only if $\vartheta_T = 0$. Thus, we may conclude that $G_T(\vartheta) = 0$ for all $\vartheta \in \Theta_{\text{adm}}$. Therefore the condition

$$\mathbb{E}_{\mathbb{Q}}[G_T(\vartheta)] \leq 0 \quad \text{for all } \vartheta \in \Theta_{\text{adm}}$$

is trivially satisfied for each probability measure $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_T . In particular, \mathbb{P} itself is a separating measure.

Finally if $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_T is an equivalent probability measure, by the first step (whose results remain unchanged by an equivalent change of measure), $M = (M_t)_{t \in [0,T]}$ is a \mathbb{Q} -martingale null at 0 for the filtration $(\mathscr{F}_t)_{t \in [0,T]}$ if and only if M_T is $\sigma(X)$ -measurable, \mathbb{Q} -integrable with mean 0 and $M_t = 0$ for all $t \in [0,T)$. Moreover, if $\psi \in L^{\mathbb{Q}}(M)$, then as M is constant and equal to 0 on [0,T),

$$\psi \bullet M_t = \begin{cases} 0 & \text{for } t < T, \\ \psi_T M_T & \text{for } t = T. \end{cases}$$
 (9)

Note that as ψ_T is constant, $\psi \bullet M$ is a true \mathbb{Q} -martingale, and therefore \mathbb{Q} is a equivalent σ -martingale measure for S if and only if it is an equivalent martingale measure. Since $\mathbb{E}[S_T] = \mu \neq 0$, \mathbb{P} is not a martingale measure and hence also not a σ -martingale measure.

(a) Define the measure $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_1 by

$$\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}} := \frac{1}{1 + \|S_1\|} / \mathbb{E} \left[\frac{1}{1 + \|S_1\|} \right],\tag{10}$$

where $\|\cdot\|$ denotes the Euclidean norm in \mathbb{R}^d . Then $\frac{d\mathbb{Q}}{d\mathbb{P}}$ is bounded by $\mathbb{E}\left[\frac{1}{1+\|S_1\|}\right]^{-1}$ and

$$\mathbb{E}_{\mathbb{Q}}[|S_1^i|] = \mathbb{E}\left[\frac{|S_1^i|}{1 + ||S_1||}\right] / \mathbb{E}\left[\frac{1}{1 + ||S_1||}\right] < \infty, \quad i = 1, \dots, d.$$
 (11)

This shows that $\mathcal{Q} \neq \emptyset$. To show that \mathcal{Q} is also convex, take $\mathbb{Q}^1, \mathbb{Q}^2 \in \mathcal{Q}$ and let $\alpha \in (0,1)$. Then $\mathbb{Q}^{\alpha} := \alpha \mathbb{Q}^1 + (1-\alpha)\mathbb{Q}^2$ is again a probability measure and equivalent to \mathbb{P} on \mathscr{F}_1 . Moreover, $\frac{d\mathbb{Q}^{\alpha}}{d\mathbb{P}}$ is bounded since $\frac{d\mathbb{Q}^1}{d\mathbb{P}}$ and $\frac{d\mathbb{Q}^2}{d\mathbb{P}}$ are so, and

$$\frac{\mathrm{d}\mathbb{Q}^{\alpha}}{\mathrm{d}\mathbb{P}} = \frac{\mathrm{d}(\alpha\mathbb{Q}^{1} + (1-\alpha)\mathbb{Q}^{2})}{\mathrm{d}\mathbb{P}} = \alpha\frac{\mathrm{d}\mathbb{Q}^{1}}{\mathrm{d}\mathbb{P}} + (1-\alpha)\frac{\mathrm{d}\mathbb{Q}^{2}}{\mathrm{d}\mathbb{P}} \le \frac{\mathrm{d}\mathbb{Q}^{1}}{\mathrm{d}\mathbb{P}} + \frac{\mathrm{d}\mathbb{Q}^{2}}{\mathrm{d}\mathbb{P}}.$$
 (12)

Finally,

$$\mathbb{E}_{\mathbb{Q}^{\alpha}}[|S_1^i|] = \mathbb{E}_{\alpha\mathbb{Q}^1 + (1-\alpha)\mathbb{Q}^2}[|S_1^i|] = \alpha\mathbb{E}_{\mathbb{Q}^1}[|S_1^i|] + (1-\alpha)\mathbb{E}_{\mathbb{Q}^2}[|S_1^i|] < \infty, \quad i = 1, \dots, d, \quad (13)$$
 which shows that $\mathbb{Q}^{\alpha} \in \mathcal{Q}$.

(b) Fix $\mathbb{Q} \in \mathcal{Q}$, and for $\epsilon \in (0,1)$, define the function

$$\varphi_{\epsilon} = \epsilon \mathbb{1}_{\{\vartheta^{tr} \Delta S_1 > 0\}} + (1 - \epsilon) \mathbb{1}_{\{\vartheta^{tr} \Delta S_1 < 0\}} \tag{14}$$

and the measure $\mathbb{Q}_{\epsilon} \approx \mathbb{Q}$ on \mathscr{F}_1 by

$$\frac{\mathrm{d}\mathbb{Q}_{\epsilon}}{\mathrm{d}\mathbb{Q}} = \frac{\varphi_{\epsilon}}{\mathbb{E}_{\mathbb{Q}}[\varphi_{\epsilon}]}.\tag{15}$$

Then $0 < \varphi_{\epsilon} \le 1$ for all $\epsilon \in (0,1)$ and hence $\mathbb{Q}_{\epsilon} \in \mathcal{Q}$ since $\mathbb{Q} \in \mathcal{Q}$ and $\frac{d\mathbb{Q}_{\epsilon}}{d\mathbb{Q}}$ is bounded. (Note that since \mathscr{F}_0 is trivial, S_0^i is a constant and hence integrability (under some measure) of S^i and ΔS^i is equivalent, $i = 1, \ldots, d$.) Now suppose that there exists $\vartheta \in \mathbb{R}^d$ such that $\vartheta^{tr} x \ge 0$ for all $x \in \mathcal{C}$. Then in particular,

$$\mathbb{E}_{\mathbb{Q}_{\epsilon}}[\vartheta^{tr}\Delta S_{1}] = \frac{\mathbb{E}_{\mathbb{Q}}[\varphi_{\epsilon}\vartheta^{tr}\Delta S_{1}]}{\mathbb{E}_{\mathbb{Q}}[\varphi_{\epsilon}]} \ge 0. \tag{16}$$

Thus, by dominated convergence

$$\mathbb{E}_{\mathbb{Q}}[\vartheta^{tr}\Delta S_1 \mathbb{1}_{\{\vartheta^{tr}\Delta S_1 < 0\}}] = \lim_{\epsilon \to 0} \mathbb{E}_{\mathbb{Q}}[\varphi_{\epsilon}\vartheta^{tr}\Delta S_1] \ge 0. \tag{17}$$

But this implies that $\vartheta^{tr}\Delta S_1 \geq 0$ Q-a.s. and, since $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_1 , also P-a.s.

(c) Since \mathscr{F}_0 is trivial, we can identify any d-dimensional predictable process $\vartheta = (0, \vartheta_1)$ with the vector $\vartheta_1 \in \mathbb{R}^d$. For convenience and in a slight abuse of notation, write ϑ instead of ϑ_1 . With this notation, it is straightforward to check that S satisfies NA if and only if whenever $\vartheta \in \mathbb{R}^d$ satisfies $\vartheta^{tr} \Delta S_1 \geq 0$ \mathbb{P} -a.s. then $\vartheta^{tr} \Delta S_1 = 0$ \mathbb{P} -a.s.

First, suppose that S satisfies NA. It suffices to show that the set C contains the origin. Seeking a contradiction, suppose that this is not the case. Then by the hint, there exist $\vartheta \in \mathbb{R}^d$ and $\mathbb{Q}_0 \in \mathcal{Q}$ such that $\vartheta^{tr} x \geq 0$ for all $x \in C$ and $\mathbb{E}_{\mathbb{Q}_0}[\vartheta^{tr} \Delta S_1] > 0$. But then by part (b), it follows that $\vartheta^{tr} \Delta S_1 \geq 0$ \mathbb{P} -a.s. and, since $\mathbb{Q}_0 \approx \mathbb{P}$ on \mathscr{F}_1 , also \mathbb{Q}_0 -a.s. But this implies that $\mathbb{Q}_0[\vartheta^{tr} \Delta S_1 > 0] > 0$, and, since $\mathbb{Q}_0 \approx \mathbb{P}$ on \mathscr{F}_1 , also $\mathbb{P}[\vartheta^{tr} \Delta S_1 > 0] > 0$, and we arrive at a contradiction.

Conversely, suppose that there exists $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_1 with $\frac{d\mathbb{Q}}{d\mathbb{P}}$ bounded and such that S is a \mathbb{Q} -martingale. This implies in particular that $\mathbb{E}_{\mathbb{Q}}[\vartheta^{tr}\Delta S_1]=0$ for all $\vartheta\in\mathbb{R}^d$ and hence, whenever $\vartheta\in\mathbb{R}^d$ satisfies $\vartheta^{tr}\Delta S_1\geq 0$ \mathbb{P} -a.s. then $\vartheta^{tr}\Delta S_1=0$ \mathbb{P} -a.s. since $\mathbb{Q}\approx\mathbb{P}$ on \mathscr{F}_1 .

(a) Since $A^1 - A^2$ is adapted, continuous, of finite variation and null at 0, it suffices to show that $A^1 - A^2$ is a local martingale. To this end, define for each $n \in \mathbb{N}$ the stopping time

$$\tau_n := \inf\{t \in [0, T] : \max(A_t^1, A_t^2) \ge n\} \land T. \tag{18}$$

Then for each $n \in \mathbb{N}$, the stopped processes $(A^1)^{\tau_n}$ and $(A^2)^{\tau_n}$ are both uniformly bounded by n, and $(\tau_n)_{n\in\mathbb{N}}$ is an increasing sequence of stopping times with $\lim_{n\to\infty} \mathbb{P}[\tau_n = T] = 1$. We proceed to show that for each $n \in \mathbb{N}$, the stopped process $(A^1 - A^2)^{\tau_n}$ is a uniformly integrable martingale. So fix $n \in \mathbb{N}$. It suffices to show that for each stopping time σ , $\mathbb{E}[(A^1)^{\tau_n}_{\sigma}] = \mathbb{E}[(A^2)^{\tau_n}_{\sigma}]$. So let σ be an arbitrary stopping time. Then

$$\mathbb{E}[(A^{1})_{\sigma}^{\tau_{n}}] = \mathbb{E}\left[\int_{0}^{T} \mathbb{1}_{]0,\sigma\wedge\tau_{n}]} dA_{s}^{1}\right] = (\mathbb{P}\otimes A^{1})\left[]0,\sigma\wedge\tau_{n}]\right]$$

$$= (\mathbb{P}\otimes A^{2})\left[]0,\sigma\wedge\tau_{n}]\right] = \mathbb{E}\left[\int_{0}^{t} \mathbb{1}_{]0,\sigma\wedge\tau_{n}]} dA_{s}^{2}\right]$$

$$= \mathbb{E}[(A^{2})_{\sigma}^{\tau_{n}}]. \tag{19}$$

(b) Consider the σ -finite measures $\mathbb{P} \otimes B$ and $\mathbb{P} \otimes C$ on $(\bar{\Omega}, \mathcal{P})$. Then by the Lebesgue decomposition theorem, there exist unique σ -finite measures $\nu_a \ll \mathbb{P} \otimes C$ and $\nu_s \perp \mathbb{P} \otimes C$ on $(\bar{\Omega}, \mathcal{P})$ such that $\nu_a + \nu_s = \mathbb{P} \otimes B$. In particular, there exists a predictable set $\bar{N} \in \mathcal{P}$ such that $\nu_s = \mathbb{1}_{\bar{N}}(\mathbb{P} \otimes B)$, $\nu_a = \mathbb{1}_{\bar{\Omega} \setminus \bar{N}}(\mathbb{P} \otimes B)$ and $(\mathbb{P} \otimes C)[\bar{N}] = 0$. Define the processes $B^1 = (B_t^1)_{t \in [0,T]}$, $B^2 = (B_t^2)_{t \in [0,T]}$ and $C^1 = (C_t^1)_{t \in [0,T]}$ by

$$B_t^1 = \int_0^t \mathbb{1}_{\bar{N}} dB_s, \quad B_t^2 = \int_0^t \mathbb{1}_{\bar{\Omega} \setminus \bar{N}} dB_s \quad \text{and} \quad C_t^1 := \int_0^t \mathbb{1}_{\bar{N}} dC_s.$$
 (20)

Then B^1 , B^2 and C^1 are increasing, adapted, continuous and null at 0, $B^1 + B^2 = B$, $\nu_s = \mathbb{P} \otimes B^1$ and $\nu_a = \mathbb{P} \otimes B^2$, and for all $\bar{A} \in \mathcal{P}$,

$$(\mathbb{P} \otimes C^1)[\bar{A}] = \mathbb{E}\left[\int_{\bar{A}} \mathbb{1}_{\bar{N}} dC_s\right] = (\mathbb{P} \otimes C)[\bar{A} \cap \bar{N}] = 0 = (\mathbb{P} \otimes 0)[\bar{A}], \tag{21}$$

where 0 denotes the zero process. Thus by part (a), we may deduce that $C^1 \equiv 0$. Next, by the Radon–Nikodým theorem, there exists a predictable process $H \geq 0$ such that

$$\nu_a = \mathbb{P} \otimes B^2 = H(\mathbb{P} \otimes C). \tag{22}$$

We proceed to show that $H \in L(C)$ and hence $H(\mathbb{P} \otimes C) = \mathbb{P} \otimes (H \bullet C)$. To this end, define for each $n \in \mathbb{N}$ the stopping time

$$\tau_n := \inf\{t \in [0, T] : \max(B_t^2, C_t) \ge n\} \land T.$$
 (23)

Then for each $n \in \mathbb{N}$, the stopped processes $(B^2)^{\tau_n}$ and C^{τ_n} are both uniformly bounded by n, and $(\tau_n)_{n \in \mathbb{N}}$ is an increasing sequence of stopping times with $\lim_{n \to \infty} \mathbb{P}[\tau_n = T] = 1$. Hence, it suffices to show that $H \in L(C^{\tau_n})$ for all $n \in \mathbb{N}$. So fix $n \in \mathbb{N}$. Then by the definition of H,

$$\mathbb{E}\left[\int_{0}^{T} H_{s} \, \mathrm{d}C_{s}^{\tau_{n}}\right] = \mathbb{E}\left[\int_{0}^{T} H_{s} \mathbb{1}_{\llbracket 0, \tau_{n} \rrbracket} \, \mathrm{d}C_{s}\right] = \int_{\bar{\Omega}} \mathbb{1}_{\llbracket 0, \tau_{n} \rrbracket} H \, \mathrm{d}(\mathbb{P} \otimes C)$$

$$= \int_{\bar{\Omega}} \mathbb{1}_{\llbracket 0, \tau_{n} \rrbracket} \, \mathrm{d}(\mathbb{P} \otimes B^{2}) = \mathbb{E}\left[\int_{0}^{T} \mathbb{1}_{\llbracket 0, \tau_{n} \rrbracket} \, \mathrm{d}B_{s}^{2}\right] = \mathbb{E}[B_{\tau_{n}}^{2}] \leq n. \tag{24}$$

Finally, since $\mathbb{P} \otimes (H \bullet C) = \mathbb{P} \otimes B^2$, it follows from part (a), that $B^2 = H \bullet C$, which together with the above establishes the claim.

(c) Suppose that S satisfies NA.

First, write $\operatorname{Var}(A) = (\operatorname{Var}(A)_t)_{t \in [0,T]}, A^+ = (A_t^+)_{t \in [0,T]}$ and $A^- = (A_t^-)_{t \in [0,T]}$ for the total, the positive and the negative variation of A, respectively. Then $\operatorname{Var}(A)$, A^+ and A^- are all increasing, adapted, continuous and null at 0, and $A = A^+ - A^-$ and $\operatorname{Var}(A) = A^+ + A^-$. On the level of measures, this means that

$$\mathbb{P} \otimes A^+, \mathbb{P} \otimes A^- \ll \mathbb{P} \otimes \text{Var}(A) \text{ and } (\mathbb{P} \otimes A^+) + (\mathbb{P} \otimes A^-) = \mathbb{P} \otimes \text{Var}(A).$$
 (25)

Hence there exist $\bar{D}^+ \in \mathcal{P}$ and $\bar{D}^- = \bar{\Omega} \setminus \bar{D}^+$ such that

$$\mathbb{P} \otimes A^{+} = \mathbb{1}_{\bar{D}^{+}}(\mathbb{P} \otimes \operatorname{Var}(A)) = \mathbb{P} \otimes (\mathbb{1}_{\bar{D}^{+}} \bullet \operatorname{Var}(A)),$$

$$\mathbb{P} \otimes A^{-} = \mathbb{1}_{\bar{D}^{-}}(\mathbb{P} \otimes \operatorname{Var}(A)) = \mathbb{P} \otimes (\mathbb{1}_{\bar{D}^{-}} \bullet \operatorname{Var}(A)). \tag{26}$$

By part (a), it follows that $A^+ = \mathbb{1}_{\bar{D}^+} \bullet \operatorname{Var}(A)$ and $A^- = \mathbb{1}_{\bar{D}^-} \bullet \operatorname{Var}(A)$. Next, if there exist predictable processes $H^+, H^- \in L(\langle M \rangle)$ such that

$$A_t^+ = \int_0^t H_s^+ \,\mathrm{d}\langle M \rangle_s \quad \text{and} \quad A_t^- = \int_0^t H_s^- \,\mathrm{d}\langle M \rangle_s, \quad t \in [0, T], \tag{27}$$

we are done by setting $H := H^+ - H^-$. So, seeking a contradiction, assume without loss of generality that there does not exist $H^+ \in L(\langle M \rangle)$ such that $A^+ = \int H^+ d\langle M \rangle$. Then by part (b), there exists $\widetilde{H}^+ \in L(\langle M \rangle)$ and $\overline{N}^+ \in \mathcal{P}$ such that

$$A_t^+ = \int_0^t \widetilde{H}_s^+ \, d\langle M \rangle_s + \int_0^t \mathbb{1}_{\bar{N}^+} \, dA_s^+ \quad \text{and} \quad \int_0^t \mathbb{1}_{\bar{N}^+} \, d\langle M \rangle_s = 0, \quad t \in [0, T],$$
 (28)

with $\mathbb{P}\left[\int_0^T \mathbb{1}_{\bar{N}^+} dA_s^+ > 0\right] > 0$. (Otherwise, we could set $H^+ := \widetilde{H}^+$.) Define the strategy $\vartheta = (\vartheta_t)_{t \in [0,T]}$ by $\vartheta := \mathbb{1}_{\bar{N}^+} \mathbb{1}_{\bar{D}^+}$. Then $\vartheta \in L(S)$ as it is predictable and bounded, and it satisfies $\vartheta \bullet M \equiv 0$ as

$$\vartheta \bullet \langle M \rangle = (\mathbb{1}_{\bar{N}^+} \mathbb{1}_{\bar{D}^+}) \bullet \langle M \rangle = \mathbb{1}_{\bar{D}^+} \bullet (\mathbb{1}_{\bar{N}^+} \bullet \langle M \rangle) = \mathbb{1}_{\bar{D}^+} \bullet 0 \equiv 0. \tag{29}$$

Moreover,

$$\vartheta \bullet A = \vartheta \bullet A^{+} - \vartheta \bullet A^{-}
= (\mathbb{1}_{\bar{N}^{+}} \mathbb{1}_{\bar{D}^{+}}) \bullet (\mathbb{1}_{\bar{D}^{+}} \bullet \operatorname{Var}(A)) - (\mathbb{1}_{\bar{N}^{+}} \mathbb{1}_{\bar{D}^{+}}) \bullet (\mathbb{1}_{\bar{D}^{-}} \bullet \operatorname{Var}(A))
= \mathbb{1}_{\bar{N}^{+}} \bullet \left((\mathbb{1}_{\bar{D}^{+}} \mathbb{1}_{\bar{D}^{+}}) \bullet \operatorname{Var}(A) \right) - \mathbb{1}_{\bar{N}^{+}} \bullet \left((\mathbb{1}_{\bar{D}^{+}} \mathbb{1}_{\bar{D}^{-}}) \bullet \operatorname{Var}(A) \right)
= \mathbb{1}_{\bar{N}^{+}} \bullet (\mathbb{1}_{\bar{D}^{+}} \bullet \operatorname{Var}(A)) - \mathbb{1}_{\bar{N}^{+}} \bullet (0 \bullet \operatorname{Var}(A))
= \mathbb{1}_{\bar{N}^{+}} \bullet A^{+} - \mathbb{1}_{\bar{N}^{+}} \bullet 0 = \mathbb{1}_{\bar{N}^{+}} \bullet A^{+}.$$
(30)

Thus,

$$\vartheta \bullet S = \mathbb{1}_{\bar{N}^+} \bullet A^+ \ge 0 \quad \text{and} \quad \mathbb{P}[\vartheta \bullet S_T > 0] = \mathbb{P}\left[\int_0^T \mathbb{1}_{\bar{N}^+} dA_s^+ > 0\right] > 0. \tag{31}$$

Thus ϑ is 0-admissible and S fails NA for 0-admissible strategies, in contradiction to the hypothesis.

(a) First, we show existence of a strong solution. To this end, note that $\mu \in L^2_{loc}((W_s)_{s \in [0,t]})$ for all t < 1 and define the process $\bar{Z} = (\bar{Z}_t)_{t \in [0,1)}$ by

$$\bar{Z}_t = \mathcal{E}\left(-\int_0^t \mu_s \, dW_s\right)_t = \exp\left(-\int_0^t \mu_s \, dW_s - \frac{1}{2} \int_0^t \mu_s^2 \, ds\right), \quad t < 1.$$
 (32)

Then for fixed $t \in (0,1)$ the process \bar{Z} restricted to [0,t] is a strictly positive continuous local martingale and the unique strong solution on [0,t] to the SDE

$$dZ_t = -Z_t \mu_t dW_t, \quad Z_0 = 1.$$
 (33)

By Fatou's lemma, it follows that \bar{Z} is a strictly positive supermartingale on [0,t] for each fixed t < 1 and therefore also on [0,1). By the supermartingale convergence theorem, $\lim_{t \uparrow 1} \bar{Z}_t$ exists \mathbb{P} -a.s. Define the process $Z = (Z_t)_{t \in [0,1]}$ by $Z_t := \bar{Z}_t$ for t < 1 and $Z_1 := \lim_{t \to 1} \bar{Z}_t$. Clearly Z is continuous, adapted and nonnegative. To show that it is a local martingale, define for $n \in \mathbb{N}$ the stopping time

$$\tau_n := \inf\{t \in [0, 1) : Z_t > n\} \land 1. \tag{34}$$

Then $(\tau_n)_{n\in\mathbb{N}}$ is an increasing sequence of stopping times with $\lim_{n\to\infty}\mathbb{P}[\tau_n=1]=1$. We proceed to show that for each fixed $n\in\mathbb{N}$, Z^{τ_n} is a uniformly integrable martingale on [0,1]. Since Z is a supermartingale, this is equivalent to showing that $\mathbb{E}[Z_{\tau_n}]=\mathbb{E}[Z_0]=1$. To this end, note that Z^{τ_n} is uniformly bounded by n. Moreover, for each fixed $m\in\mathbb{N}$, $Z^{\tau_n\wedge\frac{m-1}{m}}$ is a bounded local and hence uniformly integrable martingale on $[0,\frac{m-1}{m}]$. This implies in particular that $\mathbb{E}[Z_{\tau_n\wedge\frac{m-1}{m}}]=1$. Now dominated convergence shows that $\mathbb{E}[Z_{\tau_n}]=1$.

To show that Z satisfies (33) on [0,1], let $M \in \mathcal{H}_0^{2,c}$ be arbitrary. Then the fact that Z satisfies (33) on [0,t] for each fixed $t \in (0,1)$ gives

$$\langle Z, M \rangle_t = \int_0^t -Z_s \mu_s \, \mathrm{d}\langle W, M \rangle_s, \quad t < 1,$$
$$\langle Z, Z \rangle_t = \int_0^t Z_s^2 \mu_s^2 \, \mathrm{d}s, \quad t < 1,$$

Then monotone convergence gives

$$\int_0^1 Z_s^2 \mu_s^2 \, \mathrm{d}s = \langle Z, Z \rangle_1 < \infty \quad \mathbb{P}\text{-a.s.},\tag{35}$$

and this together with the Kunita-Watanabe inequality and dominated convergence gives

$$\langle Z, M \rangle_1 = \int_0^1 -Z_s \mu_s \, \mathrm{d}\langle W, M \rangle_s$$
 (36)

Since $M \in \mathcal{H}^{2,c}$ was arbitrary, Z solves (33) on [0,1] by the definition of the stochastic integral.

Next, we show uniqueness. So suppose that Z^1 and Z^2 are solutions of (33) on [0,1]. Then they are a fortiori solutions of (33) on [0,t] for each fixed $t \in (0,1)$, the solution of (33) is unique, and so Z^1 and Z^2 coincide on [0,t] for each fixed $t \in (0,1)$, and by continuity also on [0,1].

(b) Let $\widetilde{Z} = (\widetilde{Z}_t)_{t \in [0,1]}$ be a local \mathbb{P} -martingale for the filtration $(\mathscr{F}_t^W)_{t \in [0,1]}$ with $\widetilde{Z}_0 = 1$ such that $\widetilde{Z}S$ is also local \mathbb{P} -martingale for the filtration $(\mathscr{F}_t^W)_{t \in [0,1]}$. By Itô's representation

theorem, we may assume that \widetilde{Z} has continuous paths and that there exists a predictable process $\widetilde{H} \in L^2_{loc}(W)$ such that

$$\widetilde{Z}_s = 1 + \int_0^t \widetilde{H}_s \, \mathrm{d}W_s, \quad t \in [0, 1]. \tag{37}$$

Now the product rule gives

$$\widetilde{Z}_t S_t - \widetilde{Z}_0 S_0 = \int_0^t S_s \, d\widetilde{Z}_s + \int_0^t \widetilde{Z}_s S_s \, dW_s + \int_0^t \widetilde{Z}_s S_s \mu_s \, ds + \int_0^t \widetilde{H}_s S_s \, ds, \quad t \in [0, T].$$
(38)

Since $\widetilde{Z}S - \widetilde{Z}_0S_0$, $\int S \,\mathrm{d}\widetilde{Z}$ and $\int \widetilde{Z}S \,\mathrm{d}W$ are continuous local martingales null at 0, if follows that $\int (\widetilde{Z}S\mu + \widetilde{H}S) \,\mathrm{d}s$ is a continuous local martingale null at 0. Since it is of finite variation it must be constant 0. But this implies that for a.a. ω , $\widetilde{Z}S\mu + \widetilde{H}S$ is 0 a.e. on [0,1]. Since S is strictly positive the same is true for $\widetilde{Z}\mu + \widetilde{H}$. But his implies that $\int (\widetilde{Z}\mu + \widetilde{H})^2 \,\mathrm{d}s$ is constant 0 and hence $\int \widetilde{H} \,\mathrm{d}W = \int (-\widetilde{Z}\mu) \,\mathrm{d}W$, which shows that \widetilde{Z} solves (33) on [0,1]. By uniqueness of the solution, we may deduce that $\widetilde{Z}=Z$.

- (c) Define $\mathbb{Q} \ll \mathbb{P}$ on \mathscr{F}_1 by $d\mathbb{Q} := Z_1 dP$. Note that since Z is strictly positive on [0,1), $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_t for all $t \in (0,1)$. Moreover, S is a local \mathbb{Q} -martingale by part (b). It suffices to show that all $\vartheta \in \Theta_{\mathrm{adm}}$ with $\vartheta \bullet S_1 \geq 0$ \mathbb{P} -a.s. satisfy $\vartheta \bullet S_1 = 0$ \mathbb{P} -a.s. So let $\vartheta \in \Theta_{\mathrm{adm}}$ with $\vartheta \bullet S_1 \geq 0$ \mathbb{P} -a.s. Then by absolute continuity, $\vartheta \bullet S_1 \geq 0$ \mathbb{Q} -a.s. and hence $\vartheta \bullet S \equiv 0$ by the fact that $\vartheta \bullet S$ is a \mathbb{Q} -supermartingale (by Ansel-Stricker and Fatou) with $\vartheta \bullet S_0 = 0$. But since $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_t for all $t \in [0,1)$, this implies that $\vartheta \bullet S_t = 0$ \mathbb{P} -a.s. for all $t \in [0,1)$, and continuity of $\vartheta \bullet S$ gives $\vartheta \bullet S_1 = 0$ \mathbb{P} -a.s.
- (d) By the fundamental theorem of asset pricing, S satisfies NFLVR if and only if there exists a strictly positive \mathbb{P} -martingale $\widetilde{Z} = (\widetilde{Z}_t)_{t \in [0,1]}$ with $\widetilde{Z}_0 = 1$ such that $\widetilde{Z}S$ is a local \mathbb{P} -martingale. But if \widetilde{Z} exists, then part b) shows that $\widetilde{Z} = Z$. This establishes the claim.
- (e) First, note that the process \widetilde{Z} is well defined by part (a) since

$$\int_0^1 \frac{1}{\sqrt{1-s}} \, \mathrm{d}s = 2 < \infty \quad \text{and} \quad \int_0^t \frac{1}{1-s} \, \mathrm{d}s = \log\left(\frac{1}{1-t}\right) < \infty, \quad t \in (0,1).$$
 (39)

Next, note that $Z=\widetilde{Z}^{\tau}$ and $\sup_{t\in[0,1]}Z_t\leq 2$ \mathbb{P} -a.s., which shows that Z is a bounded local and hence true \mathbb{P} -martingale. Moreover, $Z_{\tau}=0$ on $\{\tau=1\}$ (since $\widetilde{Z}_1=0$ \mathbb{P} -a.s.) and $Z_{\tau}=2$ on $\{\tau<1\}$, which implies that $\mathbb{P}[Z_1=0]=\mathbb{P}[Z_1=2]=1/2$ by the fact that

$$1 = \mathbb{E}[Z_1] = 0 \times \mathbb{P}[Z_1 = 0] + 2 \times \mathbb{P}[Z_1 = 2]. \tag{40}$$

Now the claim follows immediately from part (c) and part (d).