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Solution 2-1

(a) Define
k∗ := min

{
k ∈ {1, . . . , N} : Gτk(ϑ) ∈ L0

+ \ {0}
}
, (1)

and set σ0 := τk∗−1 and σ1 := τk∗ . Moreover, set

h :=

{
hk

∗ if P[Gτk∗−1
(ϑ) = 0] = 1,

hk
∗
1{Gτk∗−1

(ϑ)<0} if P[Gτk∗−1
(ϑ) = 0] < 1.

(2)

Note that P[Gτk∗−1
(ϑ) < 0] > 0 in the second case by the definition of k∗. We claim that

ϑ∗ := h1Kσ0,σ1K ∈ bE is an arbitrage opportunity. Indeed, in the first case,

GT (ϑ∗) = Gτk∗ (ϑ)−Gτk∗−1
(ϑ) = Gτk∗ (ϑ) ∈ L0

+ \ {0}, (3)

and in the second case,

GT (ϑ∗) =
(
Gτk∗ (ϑ)−Gτk∗−1

(ϑ)
)
1{Gτk∗−1

(ϑ)<0}

≥ −Gτk∗−1
(ϑ)1{Gτk∗−1

(ϑ)<0} ∈ L0
+ \ {0}. (4)

(b) Let a > 0 be such that G(ϑ) ≥ −a P-a.s. By right-continuity of the paths of G(ϑ), it
suffices to show Gt(ϑ) ≥ −c P-a.s. for all t ∈ [0, T ). Seeking a contradiction, assume there
is t ∈ [0, T ) such that P[Gt(ϑ) < −c] > 0. But then ϑ∗ := ϑ1{Gt(ϑ)<−c}×(t,T ] is predictable,
in L(S) and satisfies

G(ϑ∗) = (G(ϑ)−Gt(ϑ))1{Gt(ϑ)<−c}×(t,T ] ≥ −a+ c,

GT (ϑ∗)T = (GT (ϑ)−Gt(ϑ))1{Gt(ϑ)<−c} ≥ (−c−Gt(ϑ))1{Gt(ϑ)<−c} (5)

But this shows both that ϑ∗ is admissible and that S fails NA, in contradiction to the
hypothesis.
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(a) First, assume that S is bounded. Note that then every simple strategy is admissible.
Moreover, S is a uniformly integrable Q-martingale if and only if EQ[Sτ − S0] = 0 for
all stopping times (taking values in [0, T ]). So let τ be an arbitrary stopping time, and
consider the simple strategies ϑ := 1K0,τK and −ϑ. Using that Q is an equivalent separating
measure for S then gives

0 ≥ EQ[ϑ • ST ] = EQ[Sτ − S0] = −EQ[−(Sτ − S0)] = −EQ[(−ϑ) • ST ] ≥ 0. (6)

Next, consider the case that S is locally bounded. Then there exists an increasing sequence
of stopping times (σn)n∈N taking values in [0, T ] with limn→∞P[σn = T ] = 1 such that
Sσn is bounded for all n ∈ N. It suffices to show that for each n ∈ N, Sσn is a uniformly
integrable Q-martingale. To this end, fix n ∈ N. It suffices to show that for each stopping
time τ with τ ≤ σn P-a.s., EQ[Sτ −S0] = 0. So let τ be such a stopping time, and consider
as above the simple strategies ϑ := 1K0,τK and −ϑ. Then both strategies are admissible
since S is bounded on J0, σnK and τ ≤ σn P-a.s., and the same argument as in the first
step gives EQ[Sτ − S0] = 0.

(b) By assumption, there exist a strictly positive predictable process ψ = (ψt)t∈[0,T ], an Rd-
valued (local) Q-martingale M , and an Rd-valued F0-measurable random vector S0 such
that S = S0 + ψ •M . Let ϑ ∈ Θadm. Then by the associativity of the stochastic integral,
G(ϑ) = ϑ • S = (ϑψ) •M . Moreover, as (ϑψ) •M is uniformly bounded from below by
admissibility, it is a local Q-martingale by the Ansel-Stricker theorem. By Fatou’s lemma,
it is then also a Q-supermartingale, and hence

EQ[GT (ϑ)] ≤ EQ[G0(ϑ)] = 0. (7)

(c) First, since Ft is P-trivial for all t ∈ [0, T ), a process ξ = (ξt)t∈[0,T ] is adapted if and only
if it is deterministic on [0, T ) and ξT is σ(X)-measurable. In particular, all left-continuous
and adapted processes for the filtration (Ft)t∈[0,T ] are deterministic, and by a monotone
class argument, the same is true for all predictable processes.
Next, if ϑ ∈ L(S) is arbitrary, then

GT (ϑ) = ϑ • ST = ϑ • ST− + ϑT∆ST = lim
t↑T

ϑ • St + ϑTX = 0 + ϑTX = ϑTX. (8)

Since ϑT is deterministic and X normally distributed, it follows that ϑ ∈ Θadm if and
only if ϑT = 0. Thus, we may conclude that GT (ϑ) = 0 for all ϑ ∈ Θadm. Therefore the
condition

EQ[GT (ϑ)] ≤ 0 for all ϑ ∈ Θadm

is trivially satisfied for each probability measure Q ≈ P on FT . In particular, P itself is a
separating measure.
Finally if Q ≈ P on FT is an equivalent probability measure, by the first step (whose results
remain unchanged by an equivalent change of measure), M = (Mt)t∈[0,T ] is a Q-martingale
null at 0 for the filtration (Ft)t∈[0,T ] if and only if MT is σ(X)-measurable, Q-integrable
with mean 0 and Mt = 0 for all t ∈ [0, T ). Moreover, if ψ ∈ LQ(M), then as M is constant
and equal to 0 on [0, T ),

ψ •Mt =

{
0 for t < T,

ψTMT for t = T.
(9)

Note that as ψT is constant, ψ •M is a true Q-martingale, and therefore Q is a equivalent
σ-martingale measure for S if and only if it is an equivalent martingale measure. Since
E[ST ] = µ 6= 0, P is not a martingale measure and hence also not a σ-martingale measure.
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(a) Define the measure Q ≈ P on F1 by

dQ

dP
:=

1

1 + ‖S1‖

/
E

[
1

1 + ‖S1‖

]
, (10)

where ‖ · ‖ denotes the Euclidean norm in Rd. Then dQ
dP is bounded by E

[
1

1+‖S1‖

]−1
and

EQ[|Si1|] = E

[
|Si1|

1 + ‖S1‖

]/
E

[
1

1 + ‖S1‖

]
<∞, i = 1, . . . , d. (11)

This shows that Q 6= ∅. To show that Q is also convex, take Q1,Q2 ∈ Q and let α ∈ (0, 1).
Then Qα := αQ1 + (1 − α)Q2 is again a probability measure and equivalent to P on F1.
Moreover, dQα

dP is bounded since dQ1

dP and dQ2

dP are so, and

dQα

dP
=

d(αQ1 + (1− α)Q2)

dP
= α

dQ1

dP
+ (1− α)

dQ2

dP
≤ dQ1

dP
+

dQ2

dP
. (12)

Finally,

EQα [|Si1|] = EαQ1+(1−α)Q2 [|Si1|] = αEQ1 [|Si1|] + (1−α)EQ2 [|Si1|] <∞, i = 1, . . . , d, (13)

which shows that Qα ∈ Q.

(b) Fix Q ∈ Q, and for ε ∈ (0, 1), define the function

ϕε = ε1{ϑtr∆S1≥0} + (1− ε)1{ϑtr∆S1<0} (14)

and the measure Qε ≈ Q on F1 by
dQε
dQ

=
ϕε

EQ[ϕε]
. (15)

Then 0 < ϕε ≤ 1 for all ε ∈ (0, 1) and hence Qε ∈ Q since Q ∈ Q and dQε
dQ is bounded. (Note

that since F0 is trivial, Si0 is a constant and hence integrability (under some measure) of
Si and ∆Si is equivalent, i = 1, . . . , d.) Now suppose that there exists ϑ ∈ Rd such that
ϑtrx ≥ 0 for all x ∈ C. Then in particular,

EQε [ϑ
tr∆S1] =

EQ[ϕεϑ
tr∆S1]

EQ[ϕε]
≥ 0. (16)

Thus, by dominated convergence

EQ[ϑtr∆S11{ϑtr∆S1<0}] = lim
ε→0

EQ[ϕεϑ
tr∆S1] ≥ 0. (17)

But this implies that ϑtr∆S1 ≥ 0 Q-a.s. and, since Q ≈ P on F1, also P-a.s.

(c) Since F0 is trivial, we can identify any d-dimensional predictable process ϑ = (0, ϑ1) with
the vector ϑ1 ∈ Rd. For convenience and in a slight abuse of notation, write ϑ instead of
ϑ1. With this notation, it is straightforward to check that S satisfies NA if and only if
whenever ϑ ∈ Rd satisfies ϑtr∆S1 ≥ 0 P-a.s. then ϑtr∆S1 = 0 P-a.s.
First, suppose that S satisfies NA. It suffices to show that the set C contains the origin.
Seeking a contradiction, suppose that this is not the case. Then by the hint, there exist
ϑ ∈ Rd and Q0 ∈ Q such that ϑtrx ≥ 0 for all x ∈ C and EQ0 [ϑtr∆S1] > 0. But then by
part (b), it follows that ϑtr∆S1 ≥ 0 P-a.s. and, since Q0 ≈ P on F1, also Q0-a.s. But this
implies that Q0[ϑtr∆S1 > 0] > 0, and, since Q0 ≈ P on F1, also P[ϑtr∆S1 > 0] > 0, and
we arrive at a contradiction.
Conversely, suppose that there exists Q ≈ P on F1 with dQ

dP bounded and such that S is
a Q-martingale. This implies in particular that EQ[ϑtr∆S1] = 0 for all ϑ ∈ Rd and hence,
whenever ϑ ∈ Rd satisfies ϑtr∆S1 ≥ 0 P-a.s. then ϑtr∆S1 = 0 P-a.s. since Q ≈ P on F1.
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(a) Since A1 − A2 is adapted, continuous, of finite variation and null at 0, it suffices to show
that A1 −A2 is a local martingale. To this end, define for each n ∈ N the stopping time

τn := inf{t ∈ [0, T ] : max(A1
t , A

2
t ) ≥ n} ∧ T. (18)

Then for each n ∈ N, the stopped processes (A1)τn and (A2)τn are both uniformly bounded
by n, and (τn)n∈N is an increasing sequence of stopping times with limn→∞P[τn = T ] = 1.
We proceed to show that for each n ∈ N, the stopped process (A1 − A2)τn is a uniformly
integrable martingale. So fix n ∈ N. It suffices to show that for each stopping time σ,
E[(A1)τnσ ] = E[(A2)τnσ ]. So let σ be an arbitrary stopping time. Then

E[(A1)τnσ ] = E

[∫ T

0
1K0,σ∧τnK dA1

s

]
= (P⊗A1)

[
K0, σ ∧ τnK

]
= (P⊗A2)

[
K0, σ ∧ τnK

]
= E

[∫ t

0
1K0,σ∧τnK dA2

s

]
= E[(A2)τnσ ]. (19)

(b) Consider the σ-finite measures P ⊗ B and P ⊗ C on (Ω̄,P). Then by the Lebesgue de-
composition theorem, there exist unique σ-finite measures νa � P ⊗ C and νs ⊥ P ⊗ C
on (Ω̄,P) such that νa + νs = P ⊗ B. In particular, there exists a predictable set N̄ ∈ P
such that νs = 1N̄ (P⊗ B), νa = 1Ω̄\N̄ (P⊗ B) and (P⊗ C)[N̄ ] = 0. Define the processes
B1 = (B1

t )t∈[0,T ], B2 = (B2
t )t∈[0,T ] and C1 = (C1

t )t∈[0,T ] by

B1
t =

∫ t

0
1N̄ dBs, B2

t =

∫ t

0
1Ω̄\N̄ dBs and C1

t :=

∫ t

0
1N̄ dCs. (20)

Then B1, B2 and C1 are increasing, adapted, continuous and null at 0, B1 + B2 = B,
νs = P⊗B1 and νa = P⊗B2, and for all Ā ∈ P,

(P⊗ C1)[Ā] = E

[∫
Ā
1N̄ dCs

]
= (P⊗ C)[Ā ∩ N̄ ] = 0 = (P⊗ 0)[Ā], (21)

where 0 denotes the zero process. Thus by part (a), we may deduce that C1 ≡ 0. Next, by
the Radon–Nikodým theorem, there exists a predictable process H ≥ 0 such that

νa = P⊗B2 = H(P⊗ C). (22)

We proceed to show that H ∈ L(C) and hence H(P ⊗ C) = P ⊗ (H • C). To this end,
define for each n ∈ N the stopping time

τn := inf{t ∈ [0, T ] : max(B2
t , Ct) ≥ n} ∧ T. (23)

Then for each n ∈ N, the stopped processes (B2)τn and Cτn are both uniformly bounded
by n, and (τn)n∈N is an increasing sequence of stopping times with limn→∞P[τn = T ] = 1.
Hence, it suffices to show that H ∈ L(Cτn) for all n ∈ N. So fix n ∈ N. Then by the
definition of H,

E

[∫ T

0
Hs dCτns

]
= E

[∫ T

0
Hs1K0,τnK dCs

]
=

∫
Ω̄
1K0,τnKH d(P⊗ C)

=

∫
Ω̄
1K0,τnK d(P⊗B2) = E

[∫ T

0
1K0,τnK dB2

s

]
= E[B2

τn ] ≤ n. (24)

Finally, since P ⊗ (H • C) = P ⊗ B2, it follows from part (a), that B2 = H • C, which
together with the above establishes the claim.



(c) Suppose that S satisfies NA.
First, write Var(A) = (Var(A)t)t∈[0,T ],A+ = (A+

t )t∈[0,T ] and A− = (A−t )t∈[0,T ] for the total,
the positive and the negative variation of A, respectively. Then Var(A), A+ and A− are all
increasing, adapted, continuous and null at 0, and A = A+ −A− and Var(A) = A+ +A−.
On the level of measures, this means that

P⊗A+,P⊗A− � P⊗Var(A) and (P⊗A+) + (P⊗A−) = P⊗Var(A). (25)

Hence there exist D̄+ ∈ P and D̄− = Ω̄ \ D̄+ such that

P⊗A+ = 1D̄+(P⊗Var(A)) = P⊗ (1D̄+ •Var(A)),

P⊗A− = 1D̄−(P⊗Var(A)) = P⊗ (1D̄− •Var(A)). (26)

By part (a), it follows that A+ = 1D̄+ •Var(A) and A− = 1D̄− •Var(A).
Next, if there exist predictable processes H+, H− ∈ L(〈M〉) such that

A+
t =

∫ t

0
H+
s d〈M〉s and A−t =

∫ t

0
H−s d〈M〉s, t ∈ [0, T ], (27)

we are done by setting H := H+ −H−. So, seeking a contradiction, assume without loss
of generality that there does not exist H+ ∈ L(〈M〉) such that A+ =

∫
H+ d〈M〉. Then

by part (b), there exists H̃+ ∈ L(〈M〉) and N̄+ ∈ P such that

A+
t =

∫ t

0
H̃+
s d〈M〉s +

∫ t

0
1N̄+ dA+

s and
∫ t

0
1N̄+ d〈M〉s = 0, t ∈ [0, T ], (28)

with P
[∫ T

0 1N̄+ dA+
s > 0

]
> 0. (Otherwise, we could set H+ := H̃+.) Define the strategy

ϑ = (ϑt)t∈[0,T ] by ϑ := 1N̄+1D̄+ . Then ϑ ∈ L(S) as it is predictable and bounded, and it
satisfies ϑ •M ≡ 0 as

ϑ • 〈M〉 = (1N̄+1D̄+) • 〈M〉 = 1D̄+ • (1N̄+ • 〈M〉) = 1D̄+ • 0 ≡ 0. (29)

Moreover,

ϑ •A = ϑ •A+ − ϑ •A−

= (1N̄+1D̄+) • (1D̄+ •Var(A))− (1N̄+1D̄+) • (1D̄− •Var(A))

= 1N̄+ •
(

(1D̄+1D̄+) •Var(A)
)
− 1N̄+ •

(
(1D̄+1D̄−) •Var(A)

)
= 1N̄+ • (1D̄+ •Var(A))− 1N̄+ • (0 •Var(A))

= 1N̄+ •A+ − 1N̄+ • 0 = 1N̄+ •A+. (30)

Thus,

ϑ • S = 1N̄+ •A+ ≥ 0 and P[ϑ • ST > 0] = P

[∫ T

0
1N̄+ dA+

s > 0

]
> 0. (31)

Thus ϑ is 0-admissible and S fails NA for 0-admissible strategies, in contradiction to the
hypothesis.
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(a) First, we show existence of a strong solution. To this end, note that µ ∈ L2
loc((Ws)s∈[0,t])

for all t < 1 and define the process Z̄ = (Z̄t)t∈[0,1) by

Z̄t = E
(
−
∫ ·

0
µs dWs

)
t

= exp
(
−
∫ t

0
µs dWs −

1

2

∫ t

0
µ2
s ds

)
, t < 1. (32)

Then for fixed t ∈ (0, 1) the process Z̄ restricted to [0, t] is a strictly positive continuous
local martingale and the unique strong solution on [0, t] to the SDE

dZt = −Ztµt dWt, Z0 = 1. (33)

By Fatou’s lemma, it follows that Z̄ is a strictly positive supermartingale on [0, t] for each
fixed t < 1 and therefore also on [0, 1). By the supermartingale convergence theorem,
limt↑1 Z̄t exists P-a.s. Define the process Z = (Zt)t∈[0,1] by Zt := Z̄t for t < 1 and Z1 :=

limt→1 Z̄t. Clearly Z is continuous, adapted and nonnegative. To show that it is a local
martingale, define for n ∈ N the stopping time

τn := inf{t ∈ [0, 1) : Zt > n} ∧ 1. (34)

Then (τn)n∈N is an increasing sequence of stopping times with limn→∞P[τn = 1] = 1. We
proceed to show that for each fixed n ∈ N, Zτn is a uniformly integrable martingale on [0, 1].
Since Z is a supermartingale, this is equivalent to showing that E[Zτn ] = E[Z0] = 1. To this
end, note that Zτn is uniformly bounded by n. Moreover, for each fixed m ∈ N, Zτn∧

m−1
m

is a bounded local and hence uniformly integrable martingale on [0, m−1
m ]. This implies in

particular that E[Zτn∧m−1
m

] = 1. Now dominated convergence shows that E[Zτn ] = 1.

To show that Z satisfies (33) on [0, 1], let M ∈ H2,c
0 be arbitrary. Then the fact that Z

satisfies (33) on [0, t] for each fixed t ∈ (0, 1) gives

〈Z,M〉t =

∫ t

0
−Zsµs d〈W,M〉s, t < 1,

〈Z,Z〉t =

∫ t

0
Z2
sµ

2
s ds, t < 1,

Then monotone convergence gives∫ 1

0
Z2
sµ

2
s ds = 〈Z,Z〉1 <∞ P-a.s., (35)

and this together with the Kunita-Watanabe inequality and dominated convergence gives

〈Z,M〉1 =

∫ 1

0
−Zsµs d〈W,M〉s (36)

Since M ∈ H2,c was arbitrary, Z solves (33) on [0, 1] by the definition of the stochastic
integral.
Next, we show uniqueness. So suppose that Z1 and Z2 are solutions of (33) on [0, 1]. Then
they are a fortiori solutions of (33) on [0, t] for each fixed t ∈ (0, 1). But for each fixed
t ∈ (0, 1), the solution of (33) is unique, and so Z1 and Z2 coincide on [0, t] for each fixed
t ∈ (0, 1), and by continuity also on [0, 1].

(b) Let Z̃ = (Z̃t)t∈[0,1] be a local P-martingale for the filtration (FW
t )t∈[0,1] with Z̃0 = 1 such

that Z̃S is also local P-martingale for the filtration (FW
t )t∈[0,1]. By Itô’s representation



theorem, we may assume that Z̃ has continuous paths and that there exists a predictable
process H̃ ∈ L2

loc(W ) such that

Z̃s = 1 +

∫ t

0
H̃s dWs, t ∈ [0, 1]. (37)

Now the product rule gives

Z̃tSt − Z̃0S0 =

∫ t

0
Ss dZ̃s +

∫ t

0
Z̃sSs dWs +

∫ t

0
Z̃sSsµs ds+

∫ t

0
H̃sSs ds, t ∈ [0, T ].

(38)

Since Z̃S−Z̃0S0,
∫
S dZ̃ and

∫
Z̃S dW are continuous local martingales null at 0, if follows

that
∫

(Z̃Sµ+H̃S) ds is a continuous local martingale null at 0. Since it is of finite variation
it must be constant 0. But this implies that for a.a. ω, Z̃Sµ+ H̃S is 0 a.e. on [0, 1]. Since
S is strictly positive the same is true for Z̃µ + H̃. But his implies that

∫
(Z̃µ + H̃)2 ds is

constant 0 and hence
∫
H̃ dW =

∫
(−Z̃µ) dW , which shows that Z̃ solves (33) on [0, 1]. By

uniqueness of the solution, we may deduce that Z̃ = Z.

(c) Define Q � P on F1 by dQ := Z1 dP . Note that since Z is strictly positive on [0, 1),
Q ≈ P on Ft for all t ∈ (0, 1). Moreover, S is a local Q-martingale by part (b). It suffices
to show that all ϑ ∈ Θadm with ϑ • S1 ≥ 0 P-a.s. satisfy ϑ • S1 = 0 P-a.s. So let ϑ ∈ Θadm

with ϑ•S1 ≥ 0 P-a.s. Then by absolute continuity, ϑ•S1 ≥ 0 Q-a.s. and hence ϑ•S ≡ 0 by
the fact that ϑ • S is a Q-supermartingale (by Ansel-Stricker and Fatou) with ϑ • S0 = 0.
But since Q ≈ P on Ft for all t ∈ [0, 1), this implies that ϑ •St = 0 P-a.s. for all t ∈ [0, 1),
and continuity of ϑ • S gives ϑ • S1 = 0 P-a.s.

(d) By the fundamental theorem of asset pricing, S satisfies NFLVR if and only if there exists
a strictly positive P-martingale Z̃ = (Z̃t)t∈[0,1] with Z̃0 = 1 such that Z̃S is a local P-
martingale. But if Z̃ exists, then part b) shows that Z̃ = Z. This establishes the claim.

(e) First, note that the process Z̃ is well defined by part (a) since∫ 1

0

1√
1− s

ds = 2 <∞ and
∫ t

0

1

1− s
ds = log

(
1

1− t

)
<∞, t ∈ (0, 1). (39)

Next, note that Z = Z̃τ and supt∈[0,1] Zt ≤ 2 P-a.s., which shows that Z is a bounded
local and hence true P-martingale. Moreover, Zτ = 0 on {τ = 1} (since Z̃1 = 0 P-a.s.)
and Zτ = 2 on {τ < 1}, which implies that P[Z1 = 0] = P[Z1 = 2] = 1/2 by the fact that

1 = E[Z1] = 0× P[Z1 = 0] + 2× P[Z1 = 2]. (40)

Now the claim follows immediately from part (c) and part (d).


