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Solution 2-1

(a)

Define
k= min{ke{l,...,N}:GTk(ﬁ)eLgL\{O}}, (1)
and set og := Tp+_1 and o1 := Tp+. Moreover, set
h*" if P[G,,._,(¥) =0] =1,
h = ko* . (2)
h 1{G7k*—1(ﬂ)<0} if ]P[GTk*_l(ﬂ) = 0} < 1.

Note that P[G,._,(¢) < 0] > 0 in the second case by the definition of £*. We claim that
U* := 1}, .0,] € BE is an arbitrage opportunity. Indeed, in the first case,

Gr(0%) = Gr. (9) = Gro_, (9) = Gy (9) € LG\ {0}, (3)

and in the second case,

Gr(9") = (Gr (9) = Gre () L(c,,,  (0)<0)

e (D 1(c,,. (9y<0y € LY\ {0}, (4)

v

Let a > 0 be such that G(¢) > —a P-a.s. By right-continuity of the paths of G(¥), it
suffices to show G¢(¥) > —c P-a.s. for all t € [0,T). Seeking a contradiction, assume there
is t € [0,T) such that P[G¢(¥) < —c] > 0. But then 9" := 91 g, 9)<—c} x(¢,7] I8 predictable,
in L(S) and satisfies

G(U*) = (G() — G(9) L)< x(t,1) = —a+¢,
Gr(9")r = (Gr (V) — Gi(9) LG, ()<} = (—¢ = Ge(9)) L1, (9)<—c} (5)

But this shows both that ¢* is admissible and that S fails NA, in contradiction to the
hypothesis.
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(a)

First, assume that S is bounded. Note that then every simple strategy is admissible.
Moreover, S is a uniformly integrable Q-martingale if and only if Eg[S, — So] = 0 for
all stopping times (taking values in [0,7]). So let 7 be an arbitrary stopping time, and
consider the simple strategies 1 := 1jg ;) and —¢. Using that Q is an equivalent separating
measure for S then gives

0> Eqli e Sr] = EqlS; — So] = ~Eq[~(S: — S)] = ~Eql(-9) ¢ 5] 2 0. (6)

Next, consider the case that S is locally bounded. Then there exists an increasing sequence
of stopping times (op,)nen taking values in [0, 7] with lim,,_, P[0, = T] = 1 such that
S is bounded for all n € IN. It suffices to show that for each n € IN, §°* is a uniformly
integrable Q-martingale. To this end, fix n € IN. It suffices to show that for each stopping
time 7 with 7 < 0, P-a.s., Eq[S; —So] = 0. So let 7 be such a stopping time, and consider
as above the simple strategies ¥ := 1jg; and —UJ. Then both strategies are admissible
since S is bounded on [0,0,] and 7 < 0, P-a.s., and the same argument as in the first
step gives Eq[S- — So] = 0.

By assumption, there exist a strictly positive predictable process ¢ = (wt)tE[O,T}, an R%-

valued (local) Q-martingale M, and an R%valued .Zp-measurable random vector Sy such
that S = Sy + Y e M. Let ¥ € Onqn. Then by the associativity of the stochastic integral,
G(W) = v eS = (V) @ M. Moreover, as (91) @ M is uniformly bounded from below by
admissibility, it is a local Q-martingale by the Ansel-Stricker theorem. By Fatou’s lemma,
it is then also a @Q-supermartingale, and hence

Eq|Gr (V)] < Eq[Go(9)] = 0. (7)

First, since .7 is P-trivial for all ¢ € [0,7T'), a process £ = (§):e(o,7 is adapted if and only
if it is deterministic on [0,7") and &7 is o(X)-measurable. In particular, all left-continuous
and adapted processes for the filtration (#¢),cjo,7] are deterministic, and by a monotone
class argument, the same is true for all predictable processes.

Next, if ¢ € L(S) is arbitrary, then

GT(’L9) =YeSr=19eSpr_ +U9rAST = %%111905} + 97X =0+ 97X =97 X. (8)

Since Y is deterministic and X normally distributed, it follows that ¥ € O.4yn if and
only if 97 = 0. Thus, we may conclude that Gp(9) = 0 for all ¥ € Ouqy,. Therefore the
condition

Eq[Gr(9¥)] <0 for all ¥ € O4qm

is trivially satisfied for each probability measure @ =~ P on %7. In particular, P itself is a
separating measure.

Finally if Q ~ P on %7 is an equivalent probability measure, by the first step (whose results
remain unchanged by an equivalent change of measure), M = (Mt)te[o,T] is a Q-martingale
null at 0 for the filtration (F)c(o,7 if and only if M7 is o(X)-measurable, Q-integrable
with mean 0 and M; = 0 for all ¢t € [0, T). Moreover, if ¢» € LR(M), then as M is constant

and equal to 0 on [0,7),
0 fort <T
M; = ’
YoM {szMT for t = T. ©)

Note that as 7 is constant, 1 ¢ M is a true Q-martingale, and therefore Q) is a equivalent
o-martingale measure for S if and only if it is an equivalent martingale measure. Since
E[St] = u # 0, P is not a martingale measure and hence also not a o-martingale measure.
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(a)

Define the measure Q ~ IP on %7 by

dQ 1 / [ 1 ]
S~ . E|l— |, 10
® = iys/ E LTS 1o
-1
where || - || denotes the Euclidean norm in R?¢. Then % is bounded by E [m} and
-2 ] /® ] <>
Eg[|Si||=E | ————— E|l———| <00, 1=1,...,d. 11
ot =& [y /2 e .

This shows that Q # ). To show that Q is also convex, take Q!, Q2 € Q and let a € (0, 1).
Then Q® := aQ' + (1 — a)Q? is again a probability measure and equivalent to IP on .Z.
Moreover, % is bounded since % and % are so, and
dQ* _ d(eQ'+(1-)Q?) _ dQ'
= = X
dPP dPP dPP

dQ* _dQ! |, dQ?

1— .
tA-) 0 < T ap

Finally,

Eqa[|S1]] = Baqi 4 (1-a)@2[15i]] = aBqu[ISi[] + (1~ a)Eq[|Si[] < oo, i=1,....d, (13)
which shows that Q“ € Q.
Fix Q € Q, and for € € (0, 1), define the function

Pe = Eﬂ{ﬁtrASIZO} + (1 - e)l{gtrASI<0} (14)
and the measure Q. =~ Q on .#; by
d € €
Qo _¢c (15)
dQ Eq [©e]
Then 0 < ¢ < 1foralle € (0,1) and hence Q. € Q since Q € Q and (il% is bounded. (Note

that since Z is trivial, S§ is a constant and hence integrability (under some measure) of
S? and AS? is equivalent, i = 1,...,d.) Now suppose that there exists 9 € R? such that
92 > 0 for all x € C. Then in particular,

EQ [‘peﬁtrASI]

Eq, [0 AS;] = > 0. (16)
° Eqle]
Thus, by dominated convergence
Eq[v" AS1 1 girag <0} = lim Eqleed" AS1] > 0. (17)

But this implies that 9" AS; > 0 Q-a.s. and, since Q ~ P on .%1, also P-a.s.

Since % is trivial, we can identify any d-dimensional predictable process ¢ = (0,11) with
the vector 91 € R%. For convenience and in a slight abuse of notation, write 1 instead of
1. With this notation, it is straightforward to check that S satisfies NA if and only if
whenever ¥ € R? satisfies 9" AS; > 0 P-a.s. then ¥7"AS; = 0 P-as.

First, suppose that S satisfies NA. It suffices to show that the set C contains the origin.
Seeking a contradiction, suppose that this is not the case. Then by the hint, there exist
¥ € RY and Qp € Q such that 9"z > 0 for all x € C and Eq,[9""AS;] > 0. But then by
part (b), it follows that 9" AS; > 0 P-a.s. and, since Qp ~ P on .%1, also Qp-a.s. But this
implies that Qo[¥"AS; > 0] > 0, and, since Qp ~ P on .#, also P[J""AS; > 0] > 0, and
we arrive at a contradiction.

Conversely, suppose that there exists Q ~ IP on .#; with % bounded and such that S is

a Q-martingale. This implies in particular that Eq[9""AS;] = 0 for all ¥ € R¢ and hence,
whenever ¥ € R? satisfies 9" AS; > 0 P-a.s. then 9" AS; = 0 P-a.s. since Q ~ P on .%#.
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(a)

Since A' — A? is adapted, continuous, of finite variation and null at 0, it suffices to show
that Al — A2 is a local martingale. To this end, define for each n € IN the stopping time

Tn = inf{t € [0, T] : max(A}, A?) > n} A T. (18)

Then for each n € IN, the stopped processes (A!)™ and (A?)™ are both uniformly bounded
by n, and (7, )nen is an increasing sequence of stopping times with lim,, ., P[r, = T] = 1.
We proceed to show that for each n € IN, the stopped process (A! — A%)™ is a uniformly
integrable martingale. So fix n € IN. It suffices to show that for each stopping time o,
E[(AY)T"] = E[(A?)7"]. So let o be an arbitrary stopping time. Then

BlA5] = B[ [ toneaal] = @ & 40 [j0.0 Ar]

— (P A?) []]0, oA Tn]]:| —E [/Ot 1j0,0nm] dA?]

= E[(A>)7"]. (19)

Consider the o-finite measures P ® B and P ® C on (Q,P). Then by the Lebesgue de-
composition theorem, there exist unique o-finite measures v, <K P® C and vy L P ® C
on (€, P) such that v, + v, = P ® B. In particular, there exists a predictable set N € P
such that vy = 15(P ® B), v = 1g\x(P ® B) and (P ® C)[N] = 0. Define the processes
B' = (B} )iepor), B® = (Bf)iepo,r) and C' = (C})epor) by

t t t
B = / lydB,, B= / lgydBs and Cf:= / 1y dC. (20)
0 0 0

Then B!, B? and C! are increasing, adapted, continuous and null at 0, B' + B? = B,
ve =P ® B! and v, = P ® B2, and for all A € P,

PeCHAl=E U

]lNdCS} =(P®C)[ANN]=0= (P ®0)[A], (21)
A

where 0 denotes the zero process. Thus by part (a), we may deduce that C! = 0. Next, by
the Radon—Nikodym theorem, there exists a predictable process H > 0 such that
va=P@B*=H(P®C). (22)

We proceed to show that H € L(C) and hence H(P ® C') = P ® (H o C). To this end,
define for each n € IN the stopping time

7o = inf{t € [0,T] : max(BZ,C;) > n} AT. (23)
Then for each n € IN, the stopped processes (B?)™ and C™ are both uniformly bounded
by n, and (7, )nen is an increasing sequence of stopping times with lim,,_, ., P[r, = T] = 1.

Hence, it suffices to show that H € L(C™) for all n € IN. So fix n € IN. Then by the
definition of H,

T T
E |:/ Hi dC;—":| =K |:/ HS]l]]O,Tn] dCs} = / ]l]]O,Tn]]H d(IP & C)
0 0 Q
T
— [ pra@e 5 =8| [ 10082 ~BB <0 @)
Q 0

Finally, since P ® (H o C) = P ® B2, it follows from part (a), that B> = H e C, which
together with the above establishes the claim.



(c) Suppose that S satisfies NA.
First, write Var(A) = (Var(A)y)iejo . AT = (A )iepor) and A~ = (A7 )iepo,r) for the total,
the positive and the negative variation of A, respectively. Then Var(A), AT and A~ are all

increasing, adapted, continuous and null at 0, and A = AT — A~ and Var(A) = AT + A~.
On the level of measures, this means that

P AT PR A~ <P®Var(4) and (P A"T)+(P® A" )=P®Var(4). (25)
Hence there exist DT € P and D~ = Q\ DT such that

P® AT =15+ (P ® Var(A)) =P ® (1 5+ e Var(4)),
P A =15 (P®Var(A)) =P ® (1 e Var(A)). (26)

By part (a), it follows that AT = 1+ e Var(A) and A~ = 15— e Var(A).
Next, if there exist predictable processes HY, H~ € L({M)) such that

t t
A;L:/ Hf d(M)s and A;:/ H; d(M)s, tel0,T], (27)
0 0

we are done by setting H := H™ — H~. So, seeking a contradiction, assume without loss
of generality that there does not exist H* € L((M)) such that At = [[H* d(M). Then

by part (b), there exists HT € L((M)) and N* € P such that
t
Aj_/ Hid / 1y+dAY  and / Ig+ d(M)s =0, t€[0,T], (28)
0

with P [fOT Ly dAS > 0} > 0. (Otherwise, we could set HT := I;TJF) Define the strategy

VU = (Vt)tcpr) by ¥ := L+ 1p+. Then ¥ € L(S) as it is predictable and bounded, and it
satisfies ¥ @ M =0 as

Ve (M)=1y+lp+)e(M)=1p+ eIy e(M))=1p+e0=0. (29)
Moreover,

JeA=10e A" — e A”
= (Ig+1p+) e (Ip+ o Var(4)) — (Iy+1p+) @ (Lp- o Var(4))
— 1. e ((]1D+]1§+) oVar(A)) g ((nmnf,,) oVar(A))
=15+ 0(1lps eVar(A)) — 15+ @ (0 Var(A))
=1y 0 AT — g, e0=Tg; e A" (30)

Thus,
T
ﬁoSz]lN+oA+20 and IP[q?oST>O]—IP[/ ]1N+dAj>0]>0. (31)
0

Thus ¢ is 0-admissible and S fails NA for 0-admissible strategies, in contradiction to the
hypothesis.



Solution 2-5

(a) First, we show existence of a strong solution. To this end, note that € L (Ws)seo.)

for all t < 1 and define the process Z = (Zy)iejo,1) by

Zt:5(—/.,udes)t:exp(—/tudeS—;/t,ugds>, t<1. (32)
0 0 0

Then for fixed ¢ € (0,1) the process Z restricted to [0,] is a strictly positive continuous
local martingale and the unique strong solution on [0, ¢] to the SDE

dZt = —Zt,U,t th, ZO =1. (33)

By Fatou’s lemma, it follows that Z is a strictly positive supermartingale on [0, ] for each
fixed t < 1 and therefore also on [0,1). By the supermartingale convergence theorem,
limyyq Z; exists P-a.s. Define the process Z = (Z¢)go) by %t := Zi for t < 1 and Z; :=
lim;_,1 Z;. Clearly Z is continuous, adapted and nonnegative. To show that it is a local
martingale, define for n € IN the stopping time

T, = inf{t € [0,1) : Zx > n} A L. (34)

Then (7,,)nen is an increasing sequence of stopping times with lim,,_, P[r, = 1] = 1. We
proceed to show that for each fixed n € IN, Z™ is a uniformly integrable martingale on [0, 1].
Since Z is a supermartingale, this is equivalent to showing that E[Z;, | = E[Zy] = 1. To this

end, note that Z™ is uniformly bounded by n. Moreover, for each fixed m € IN, ZmAE

is a bounded local and hence uniformly integrable martingale on [0, ™1]. This implies in
particular that E[Z_  m-1] =1. Now dominated convergence shows that E[Z;,] = 1.

To show that Z satisfies (33) on [0, 1], let M € ’Hg’c be arbitrary. Then the fact that Z
satisfies (33) on [0, ] for each fixed t € (0, 1) gives

&+

(2, M), :/ T d(W, M), t <1,
0
t
(Z,Z)y = | Z%u2ds, t<1,
0
Then monotone convergence gives
1
/ Z2u2ds = (Z,7Z); < 0o P-as., (35)
0

and this together with the Kunita-Watanabe inequality and dominated convergence gives
1
(M) = [ -2 AW ), (36)
0

Since M € H*¢ was arbitrary, Z solves (33) on [0,1] by the definition of the stochastic
integral.

Next, we show uniqueness. So suppose that Z! and Z? are solutions of (33) on [0,1]. Then
they are a fortiori solutions of (33) on [0,t] for each fixed ¢ € (0,1). But for each fixed
t € (0,1), the solution of (33) is unique, and so Z! and Z? coincide on [0, ] for each fixed
t € (0,1), and by continuity also on [0, 1].

Let Z = (Zt)te[o,l] be a local P-martingale for the filtration (7" )sc(o 1) with Zy = 1 such
that ZS is also local P-martingale for the filtration (%W)te[o,u- By Itd’s representation



theorem, we may assume that 7 has continuous paths and that there exists a predictable
process H € L (W) such that

~ t ~
7, = 1+/ Hodw,, teo,1]. (37)
0
Now the product rule gives

. . t . t t t
ZtSt—ZOS():/ ssdzs+/ ZSSdeS+/ ZSSS/Lst—{—/ H,S,ds, te[0,T).
0 0 0 0
(38)

Since ZS — ZOSO, /s dZ and J 7S dW are continuous local martingales null at 0, if follows
that [ (ZSpu+HS) ds is a continuous local martingale null at 0. Since it is of finite variation
it must be constant 0. But this implies that for a.a. w, ZS,u + HS is 0 ae. on [0,1]. Since
S is strictly positive the same is true for Zu + H. But his implies that [( Z,u + fI) ds is
constant 0 and hence [ HdW = [(—Zu)dW, which shows that Z solves (33) on [0,1]. By
uniqueness of the solution, we may deduce that Z=2.

Define Q < P on #; by dQ := Z; dP. Note that since Z is strictly positive on [0, 1),
Q~ P on % forall t € (0,1). Moreover, S is a local Q-martingale by part (b). It suffices
to show that all ¥ € ©,4n with ¥ e .S > 0 IP-a.s. satisfy ¢ ¢ S1 = 0 P-a.s. So let ¥ € O,qm
with 1} .57 > 0 IP-a.s. Then by absolute continuity, ?e.S7 > 0 Q-a.s. and hence Je.5 = 0 by
the fact that ) S is a Q-supermartingale (by Ansel-Stricker and Fatou) with ¢ e Sy = 0.
But since Q ~ P on .%; for all t € [0, 1), this implies that J ¢ S; = 0 P-a.s. for all ¢ € [0, 1),
and continuity of ¢} ¢ S gives ¥ @ S; = 0 P-a.s.

By the fundamental theorem of asset pricing, S satisfies NFLVR if and only if there exists
a strictly positive P-martingale Z = (Zt)te[o 1] with Zo = 1 such that ZS is a local -

martingale. But if 7 exists, then part b) shows that Z = Z. This establishes the claim.

First, note that the process Z is well defined by part (a) since

Lo b 1
/ ds=2< o0 and / = log < oo, te(0,1). (39)
0 V1—s o 1—s 1t

Next, note that Z = Z7 and Supsepo,1) £t < 2 P-a.s., which shows that Z is a bounded

local and hence true P-martingale. Moreover, Z, = 0 on {r = 1} (since Z; = 0 P-a.s.)
and Z, = 2 on {7 < 1}, which implies that P[Z; = 0] = P[Z; = 2] = 1/2 by the fact that

= E[Z)] =0 x P[Z, = 0] + 2 x P[Z; = 2. (40)

Now the claim follows immediately from part (c¢) and part (d).



