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Solution 4-1

For convenience, define the process H = (Nk)k:07,,,,T by Hy, := U(Hy), k € {0,...,T}. Moreover,

note that by a result in the lecture notes, V' is a IP-supermartingale and satisfies

Vi =esssupE[U(H,) | #] P-as. (1)

TESK,T

(a) For & = T the claim is trivial. So assume that k¥ < T. Let k < ¢ < T. Using that

Vi=E[Vy1 | F) on {7} > {} since Hy < V;on {mf > £} and Vﬁl = VZ’: on {7} </}
gives
EV, | F) =BV | Zdlrzsn + Vi Liran
= VE]I{T]:>@} + VZ’“ ]l{T;g} = V;’“ P-a.s. (2)

Thus, V' s a P-martingale on {k,...,T}. This together with the fact that VT; = I?T;
by the definition of 77 and (1) gives

E[U(H,:) | Fi) = B[V, | Fi] = Vi =V, = essswp E[U(H,) | F] P-as.  (3)
TESk,T

By the results in the lecture notes (adapted to our setup), there exist a predictable process
Y = (19,1@ . ,’lgg)k:Lm’T and an increasing, adapted process C' = (C)g=o,..7 null at 0

such that V =V + 9 ¢ S — C P-a.s. Moreover, by part (a), the stopped process VTS is a
P-martingale. Thus,

E[Y o Sy — Crs] = 0. (4)

Since the local P-martingale 1) S is uniformly bounded from below by —V, it is even a
true P-martingale by Exercise 3-1 (a). Hence, we may conclude that E[C7+] = 0. Since C
is nonnegative and increasing, this implies that C' = 0 P-a.s. on [0, 7;]. Then

70-1—190575 ZVTg :IA‘LS,

where the last equality follows from the definition of 7.



Solution 4-2

(a)

First, suppose that there exists a buyer arbitrage. Then using that Q ~ P on %7, there
exist a predictable process ¥ = (19,1,, ... ,ﬁg)k:17.“7T, a constant ¢ > 0 and a stopping time
7 € Sp,r such that

VoS, +c(H, — S >0 Qas. and QeS, +c(H, — S >0]>0,

Thus,
Eq[9 e Sy + c(H, — S{T)] > 0. (5)

Since H is bounded, it follows that (Ve ST.)” € L'(Q). Since Y ST is a local Q-martingale,
Exercise 3-1 (a) implies that © ST is even a true Q-martingale. Thus, Eg[J e S;] = 0 and

EqlH,] > Si. (6)

This shows that S§ < sup,cs, . Eq[H-].

Conversely, suppose that 55{ < Supeg, » EqQ [H.]. Let V, 7¢ and 9 be as in Exercise 4-1
(b) (with IP replaced by Q and U(H) replaced by H). Then

(—0) ® Sy + (Hrz — S§T) = Vo — S > 0 P-as, (7)
and so there exists a buyer arbitrage.

First, suppose that there exists a seller arbitrage. Then using that Q ~ P on .%p, there
exist a predictable process ¢ = (19,1€, .. 719Z)k:1,...,T and a constant ¢ < 0 such that

Ve Ss+c(Hry —Si) >0 Qas. and Qe Sy +c(He: —SF)>01>0 (8)

where 7 satisfies
Eq[H::] = sup EqlH]. 9)
TES(),T

The existence of 73 follows from Exercise 4-1 (a). Then as in part (a), ST is a true
Q-martingale and so

BqlHy;] < S§1 (10)
Conversely, suppose that ST > sup,. So.r EQ[H:]. By a result in the lecture notes, there
exists a predictable process 1 = (29,16, e ,ﬁ%)kzlp._’T such that
sup Eq[H,]+VeS>H P-as. (11)
TESoyT

Thus, for each stopping time 7 € Sp 7,

VoS, — (Hy —S) >~ sup Eql[H,|+ S >0 P-as., (12)
TES(),T

and so there exists a seller arbitrage.



Solution 4-3

(a)

Since r < %2, §tl = sexp (aWt + (r — %2) t) converges PP-a.s. to 0 as ¢t — oo. Therefore
71, < o0 P-a.s. for all L € (0, K).

First, if s < L, then 77, = 0 and so vr(s) = K —s. Next, if s > L, then 7, = o, with
a= %log 1 and b= g — ~. Moreover, §}L = L and therefore using the hint,

— (K — L) (%)_?. (13)

Note that (13) also holds for s = L, i.e., the function v, (s) is continuous on (0, co).

27

First, define the function g : (0, K) — (0,00) by g(L) := (K — L)L+%. Then g is in
C1((0,K)) with limp o g(L) = 0 and limp+x g(L) = 0, and

2r 1

2 zr 2 2r LUQ
g(L)y= KL - <"; + 1) L7 = 2 (2rK — (2r + 0?)L). (14)
o o o
Solving for ¢ = 0 shows that L* := ZT%:"UQK is the unique maximiser of ¢ in (0, K).

Second, for L € (0, K), define the function Ay, : (0,00) — (0,00) by hr(s) = s_c%g(L).
Then hr-(L*) = K — L* and

x —27“ * —27" K - 2r QK
L(L¥) = U2L*hL*(L ) = — ( 23}“2*" = —1. (15)
2r+o

Third, for L € (0, K), note that vz (s) = (K — s)ls<ry + hr(s)L{s>py for all s € (0,00).
Since hp« is strictly convex, for s € (L*, K],

hp«(s) > hps(L*) + W (L*) (s — L*) = (K — L*) — (s — L*) = K — s. (16)
This shows that vps(s) > (K — s)™ for all s € (0,00).
Finally, fix L € (0, K). We show that vy, < vp-. Indeed, by the above, for s < L,
vr(s) = K —s <wp=«(s). (17)

Moreover, for s > max(L*, L),

2r

vr(s) = hi(s) = s~ g(L) < s 2 (L") = hye(s) = vp-(s). (18)

If L > L* this establishes the claim. Otherwise, let s € (L,L*). Then there exists
A € (0,1) such that s = AL+ (1 — \)L*. Then by convexity of hy and using that hy < hp«
as g(L) < g(L"),

vr(8) =hp(s) =hp(AL+ (1 = X\)L*) < Ahp(L) + (1 = Nhp(LY)
< ML) + (1= Ahpe (L) = MK — L) + (1 = (K — L*)
=K —s=uvp«(s). (19)



(c) Define the function f : (0,00) — R by f(s) := K —s. Then vy € C?((0, L*) U (L*, 00))
by the fact that f,hr+ € C%((0,00)). Moreover, v« € C1((0,00)) as f(L*) = hy«(L*) and
J/(L*) = b (L*). For s € (0,00), a simple differentiation gives

—rf(s)+rsf'(s)+ %(7252]””(5) =—r(K—-s5)—rs+0=—rK <0,

1 —2r 272 -2
—rhp(8) + rshl(s) + 50'282h//*(8) =g(L")s = (—r - O_—Tz —r <02T - 1)) =0. (20)
This implies that
1
—rvps(8) + rsvl.(s) + 50232112* (s) <0, s€(0,00)\{L"}. (21)

Next, by It6’s formula using the hint,

AV, = —r exp(—rt)vp= (§tl) dt + exp(—rt)v]. (gtl) dgtl

1 ~ ~
+ 3 exp(—7t)v/ . (Stl)]l{[g“tl;gp} d<51>t
= exp(—rt) |:O'UL* (SHS}dw,
- IR -
+ ( —rop(SH) + rvf . (SHSE + 502(53)21}}:* (Stl)]l{gtl#y})dt} ) (22)

It follows from (21) that V is a local P-supermartingale. Since it is nonnegative, Fatou’s
lemma implies that it is even a true P-supermartingale.

Finally, by part (b), exp(—rt)v«(s) > exp(—rt)(K —s)7 for all s € (0,00) and ¢ > 0. This
together with the stopping theorem for supermartingales gives,

(K - SH*

vp+(s) > sup Elexp(—rr)v-(SH] > sup E %

TESO,OO TESO,oo

] =v(s). (23)

Since trivially v« (s) < v(s) for all s € (0, 00), this establishes the claim.

Solution 4-4

(a) “=": Secking a contradiction, suppose that S fails NA. Then there exists ¥ € R?\ {0}
such that 9"AS; > 0 P-a.s. and P[9"AS; > 0] > 0. In particular, 9 € A(0). But then
also for each A > 0, A\J € A(0), and so A(0) is not bounded and hence not compact. Since
A(0) C A(z), we arrive at a contradiction.

“«<" Seeking a contradiction, suppose that A(x) is not compact. Since A(x) is clearly
closed, this means that A(x) is not bounded. Hence, there exists a sequence (Up)neN

in A(z) \ {0} such that lim, oo [[9n]lec = +00. For n € N, define 7, := '2—. Then

19” oo
|Mnllcc = 1 by construction for each n € IN. Since the unit ball (with rgspgc‘c to the
maximum norm) in R is compact, there exists a subsequence, denoted also by (7, )nen,
converging to some € R? with ||n]lcc = 1. Using that ¥, € A(z) for all n € N and
limy, 00 |0 ]|0o = 400 gives

IITAS -
n"AS; = lim n"AS; = lim “n 2Pl > im inf — - =0 P-as. (24)
n—oo

n—=00 || U0 n—00 |0

Since 1 # 0, it follows from the non-redundancy of S that P[n!"AS; > 0] > 0. Thus, 7 is
an arbitrage opportunity, and we arrive at a contradiction.



(b)

“=" Seeking a contradiction, suppose that S fails NA. Then there exists ¥ € R4\ {0}
such that 9" AS; > 0 P-a.s. and P[¢9"AS; > 0] > 0. Then by monotone convergence and
by the fact that U(occ) = 400,

lim E[U(z + A" AS))] = U(x)PW"AS; = 0] + U(co)P[I"AS; > 0] = +oo,  (25)

A—00

Since A\J € A(x) for all A > 0 as in part (a), this implies that u(z) = 400, and we arrive
at a contradiction.

“«<" Since A(x) is compact by part (a), there exists ¢ > 0 such that ||¥]. < ¢ for all
¥ € A(x). This together with concavity of U shows that for all ¥ € A(z),

d
Uz +0"AS)) < Ux) + U'(z)(07AS)) < Ulx) +cU'(z) Y |AS}| =Y. (26)

i=1

Note that Y is integrable since E[|AS!|] < oo for i € {1,...,d} by hypothesis and by the
fact that % is trivial. Thus

u(zr) = sup E[U(z +97"AS)] <E[Y] < co. (27)
Ve A(x)

Note that u(z) < oo by part (b).

First, we establish existence of ¥*. Let (9, )n,en be a sequence in A(x) such that

lim E[U(z+ 97AS))] = u(z). (28)

n—o0

Since A(x) is compact by part (a), there exists a subsequence, denoted again by (95, )nen,
converging to some ¥* € A(z). Now by Fatou’s lemma using (26), and the fact that
v € A(z),

u(z) = lim E[U(z + 97 AS)] < E |limsup U(z + 97 AS))

n—ro0 n—00

—E[U(z+ ()" AS)] < u(a). (29)

Next, we establish uniqueness of ¥*. To ~this end, let A= A(x) be another maximiser
of E[U(z 4+ 9" ASy)]. Set U* := $9* + $9*. Then 9¥* € A(z) by convexity of A(z). By
concavity of U on [0, 00),

Uz + (9%)ASy) > %U(az +(09)TAS)) + %U(m + ()T AS)). (30)

Moreover, by strict concavity of U on (0,00), by strict concavity of U on [0,00) in case
that U(0) > —oo and by the fact that z 4 (9%)" ASy, z + (9*)" AS; > 0 P-a.s. in case that
U(0) = —oo, the inequality in (30) is strict on {(9*)"AS; # (9*)"AS;}. On the other

hand, by maximality of ¥* and ¥*, it follows that

E[U(z + (0%)"ASy)] <

< %E[U(x + (0% AS)] + %]E[U(x + ()T AS)].

Thus, we may conclude that (9*)IrAS) = (’5*)”’A51 P-a.s. Now non-redundancy of S gives
v =9



Solution 4-5

(a)

Fix 0 < a < b < ¢. Then there exists A € (0, 1) such that b = Ac + (1 — A)a. By concavity
of U,

Ub)—U(a) UXc+ (1—XNa)—Ula)

_ 5 AU() — Ufa) _ Ule) — Ula)

b—a Ae—a) Ae—a) N c—a
(1 =X(U(c) - U(a)) S U(c) =U(Ac+ (1 = Na) _ U(c) — U(b) (31)
(1=X)(c—a) - (1=X)(c—a) c—b

For z <y <4, setting a := z, b := ¢y’ and ¢ := y” shows that y — % is decreasing
U(y)-U(z)
y—z
is also decreasing on (0, z), and for ¢/ < z < y”, setting a := ¢/, b := z and ¢ := ¢,
establishes that y — %

on (z,00), for iy < y” < z, setting a := 3/, b := " and ¢ := 2 shows that y

is decreasing everywhere on (0, 00) \ {z}.

Let n € R?\ {0} be arbitrary. Since ¥* is an interior point of A(x), 9* + en € A(x) for all
€ > 0 sufficiently small. For € > 0 sufficiently small, set
* tr o *\tr
AT Uz + (9" 4+ en)"ASy) — U(x + () AS1). (32)

€ €

Then on {n'"AS; # 0},
Uz + (9% + en)" ASy) — Uz + (9%)"ASy)

en“"ASl ’
and by part (a), this increases monotonically to (n*" ASy)U’(z+ (9*)"AS;) > —oo as e | 0.
In particular, for n := ¥*, using that U’ < 400 on (0,00) and (9*)""AS; = —z < 0 on
{z + (9*)"AS; = 0}, this gives U'(x + (9*)"AS;) < oo P-a.s.
On the other hand, on {n'"AS; = 0}, A = 0, and this trivially increases monotonically
to (" AS))U'(z + (9*)"AS)) as € | 0.
Now by the fact that U is increasing, by the fact that U(0) > —oo and by optimality of
¥*, for € > 0 sufficiently small,

U0) — U(z + (9*)"ASy)

€

Al = (" AS)) (33)

< AL (34)
Thus, A? € L'(PP) for e sufficiently small, and so by the above and monotone convergence,
(" AS)U'(z + (9%)"ASy) € L} (P) and

E[(n""AS)U' (z + (9%)"ASy)] < 0. (35)

The final claim follows by setting  := (1,0,...,0), n = (-=1,0,...,0), n := (0,1,0,...,0),
n:=(0,-1,0,...,0),...,7:=(0,...,0,1) and n := (0,...,0,—1).

Using that U'(z + (¢*)""AS)) € (0,00) P-a.s. by strict concavity of U on (0, 00) and part
(b) and that E[U’(z + (9*)" AS1)AS}] = 0 for all i € {1,...,d}, it suffices to show that
U'(z + (9%)"AS;) € LY(P). Since U’ is decreasing on (0, 00), it even suffices to show that

U'(x + (0)" ASU oy 9=y as, <oy € L' (P). (36)
Since ((9*)"AS)U'(x + (9*)"ASy) € LY(P) by part (b),
E[U'(z + (9°)" AS1) L gq (9+)r 81 <a/2}]
= E[U'(z + (9*)" AS1) 9y as) <—a/2}]
< E[—((0")"AS)U' (z + ()" AS1)Ly(g-)r a5y <—/2})
- x/2
< ZE[|(9)TAS U (2 + (9%)TASY)] < oo. (37)

SHEES



