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Solution 4-1

For convenience, define the process H̃ = (H̃k)k=0,...,T by H̃k := U(Hk), k ∈ {0, . . . , T}. Moreover,
note that by a result in the lecture notes, V is a P-supermartingale and satisfies

V k = ess sup
τ∈Sk,T

E[U(Hτ ) | Fk] P-a.s. (1)

(a) For k = T the claim is trivial. So assume that k < T . Let k ≤ ` < T . Using that
V ` = E[V `+1 | F`] on {τ∗k > `} since H̃` < V ` on {τ∗k > `} and V τ∗k

`+1 = V
τ∗k
` on {τ∗k ≤ `}

gives

E[V
τ∗k
`+1 | F`] = E[V `+1 | F`]1{τ∗k>`} + V

τ∗k
` 1{τ∗k≤`}

= V `1{τ∗k>`} + V
τ∗k
` 1{τ∗k≤`} = V

τ∗k
` P-a.s. (2)

Thus, V τ∗k is a P-martingale on {k, . . . , T}. This together with the fact that V τ∗k
= H̃τ∗k

by the definition of τ∗k and (1) gives

E[U(Hτ∗k
) | Fk] = E[V τ∗k

| Fk] = V
τ∗k
k = V k = ess sup

τ∈Sk,T
E[U(Hτ ) | Fk] P-a.s. (3)

(b) By the results in the lecture notes (adapted to our setup), there exist a predictable process
ϑ = (ϑ1

k, . . . , ϑ
d
k)k=1,...,T and an increasing, adapted process C = (Ck)k=0,...,T null at 0

such that V = V 0 + ϑ • S − C P-a.s. Moreover, by part (a), the stopped process V τ∗0 is a
P-martingale. Thus,

E[ϑ • Sτ∗0 − Cτ∗0 ] = 0. (4)

Since the local P-martingale ϑ • S is uniformly bounded from below by −V 0, it is even a
true P-martingale by Exercise 3-1 (a). Hence, we may conclude that E[Cτ∗0 ] = 0. Since C
is nonnegative and increasing, this implies that C ≡ 0 P-a.s. on J0, τ∗0 K. Then

V 0 + ϑ • Sτ∗0 = V τ∗0
= H̃τ∗0

,

where the last equality follows from the definition of τ∗0 .



Solution 4-2

(a) First, suppose that there exists a buyer arbitrage. Then using that Q ≈ P on FT , there
exist a predictable process ϑ = (ϑ1

k, . . . , ϑ
d
k)k=1,...,T , a constant c > 0 and a stopping time

τ ∈ S0,T such that

ϑ • Sτ + c(Hτ − SH0 ) ≥ 0 Q-a.s. and Q[ϑ • Sτ + c(Hτ − SH0 ) > 0] > 0,

Thus,
EQ[ϑ • Sτ + c(Hτ − SH0 )] > 0. (5)

Since H is bounded, it follows that (ϑ•SτT )− ∈ L1(Q). Since ϑ•Sτ is a local Q-martingale,
Exercise 3-1 (a) implies that ϑ •Sτ is even a true Q-martingale. Thus, EQ[ϑ •Sτ ] = 0 and

EQ[Hτ ] > SH0 . (6)

This shows that SH0 < supτ∈S0,T EQ[Hτ ].

Conversely, suppose that SH0 < supτ∈S0,T EQ[Hτ ]. Let V , τ∗0 and ϑ be as in Exercise 4-1
(b) (with P replaced by Q and U(H) replaced by H). Then

(−ϑ) • Sτ∗0 + (Hτ∗0
− SH0 ) = V 0 − SH0 > 0 P-a.s., (7)

and so there exists a buyer arbitrage.

(b) First, suppose that there exists a seller arbitrage. Then using that Q ≈ P on FT , there
exist a predictable process ϑ = (ϑ1

k, . . . , ϑ
d
k)k=1,...,T and a constant c < 0 such that

ϑ • Sτ∗0 + c(Hτ∗0
− SH0 ) ≥ 0 Q-a.s. and Q[ϑ • Sτ∗0 + c(Hτ∗0

− SH0 ) > 0] > 0 (8)

where τ∗0 satisfies
EQ[Hτ∗0

] = sup
τ∈S0,T

EQ[Hτ ]. (9)

The existence of τ∗0 follows from Exercise 4-1 (a). Then as in part (a), ϑ • Sτ∗0 is a true
Q-martingale and so

EQ[Hτ∗0
] < SH0 . (10)

Conversely, suppose that SH0 > supτ∈S0,T EQ[Hτ ]. By a result in the lecture notes, there
exists a predictable process ϑ = (ϑ1

k, . . . , ϑ
d
k)k=1,...,T such that

sup
τ∈S0,T

EQ[Hτ ] + ϑ • S ≥ H P-a.s. (11)

Thus, for each stopping time τ ∈ S0,T ,

ϑ • Sτ − (Hτ − SH0 ) ≥ − sup
τ∈S0,T

EQ[Hτ ] + SH0 > 0 P-a.s., (12)

and so there exists a seller arbitrage.



Solution 4-3

(a) Since r < σ2

2 , S̃1
t = s exp

(
σWt +

(
r − σ2

2

)
t
)
converges P-a.s. to 0 as t → ∞. Therefore

τL <∞ P-a.s. for all L ∈ (0,K).
First, if s ≤ L, then τL = 0 and so vL(s) = K − s. Next, if s > L, then τL = σa,b with
a = 1

σ log s
L and b = σ

2 −
r
σ . Moreover, S̃1

τL
= L and therefore using the hint,

vL(s) = E[exp(−rτL)(K − L)]

= (K − L) exp

(
− 1

σ
log

s

L

(√
σ2

4
− r +

r2

σ2
+ 2r − σ

2
+
r

σ

))

= (K − L)
( s
L

)− 1
σ (σ2 + r

σ
−σ

2
+ r
σ )

= (K − L)
( s
L

)− 2r
σ2 . (13)

Note that (13) also holds for s = L, i.e., the function vL(s) is continuous on (0,∞).

(b) First, define the function g : (0,K) → (0,∞) by g(L) := (K − L)L
2r
σ2 . Then g is in

C1((0,K)) with limL↓↓0 g(L) = 0 and limL↑↑K g(L) = 0, and

g′(L) =
2r

σ2
KL

2r
σ2
−1 −

(
2r

σ2
+ 1

)
L

2r
σ2 =

L
2r
σ2
−1

σ2
(2rK − (2r + σ2)L). (14)

Solving for g′ = 0 shows that L∗ := 2r
2r+σ2K is the unique maximiser of g in (0,K).

Second, for L ∈ (0,K), define the function hL : (0,∞) → (0,∞) by hL(s) = s−
2r
σ2 g(L).

Then hL∗(L∗) = K − L∗ and

h′L∗(L
∗) =

−2r

σ2L∗
hL∗(L

∗) =
−2r

σ2

(
K − 2r

2r+σ2K
2r

2r+σ2K

)
= −1. (15)

Third, for L ∈ (0,K), note that vL(s) = (K − s)1{s≤L} + hL(s)1{s>L} for all s ∈ (0,∞).
Since hL∗ is strictly convex, for s ∈ (L∗,K],

hL∗(s) > hL∗(L
∗) + h′L∗(L

∗)(s− L∗) = (K − L∗)− (s− L∗) = K − s. (16)

This shows that vL∗(s) ≥ (K − s)+ for all s ∈ (0,∞).
Finally, fix L ∈ (0,K). We show that vL ≤ vL∗ . Indeed, by the above, for s ≤ L,

vL(s) = K − s ≤ vL∗(s). (17)

Moreover, for s ≥ max(L∗, L),

vL(s) = hL(s) = s−
2r
σ2 g(L) ≤ s−

2r
σ2 g(L∗) = hL∗(s) = vL∗(s). (18)

If L ≥ L∗, this establishes the claim. Otherwise, let s ∈ (L,L∗). Then there exists
λ ∈ (0, 1) such that s = λL+ (1−λ)L∗. Then by convexity of hL and using that hL ≤ hL∗
as g(L) ≤ g(L∗),

vL(s) = hL(s) = hL(λL+ (1− λ)L∗) ≤ λhL(L) + (1− λ)hL(L∗)

≤ λhL(L) + (1− λ)hL∗(L
∗) = λ(K − L) + (1− λ)(K − L∗)

= K − s = vL∗(s). (19)



(c) Define the function f : (0,∞) → R by f(s) := K − s. Then vL∗ ∈ C2((0, L∗) ∪ (L∗,∞))
by the fact that f, hL∗ ∈ C2((0,∞)). Moreover, vL∗ ∈ C1((0,∞)) as f(L∗) = hL∗(L

∗) and
f ′(L∗) = h′L∗(L

∗). For s ∈ (0,∞), a simple differentiation gives

−rf(s) + rsf ′(s) +
1

2
σ2s2f ′′(s) = −r(K − s)− rs+ 0 = −rK ≤ 0,

−rhL∗(s) + rsh′L∗(s) +
1

2
σ2s2h′′L∗(s) = g(L∗)s

−2r

σ2

(
−r − 2r2

σ2
− r

(
−2r

σ2
− 1

))
= 0. (20)

This implies that

−rvL∗(s) + rsv′L∗(s) +
1

2
σ2s2v′′L∗(s) ≤ 0, s ∈ (0,∞) \ {L∗}. (21)

Next, by Itô’s formula using the hint,

dṼt = −r exp(−rt)vL∗(S̃1
t ) dt+ exp(−rt)v′L∗(S̃1

t ) dS̃1
t

+
1

2
exp(−rt)v′′L∗(S̃1

t )1{S̃1
t 6=L∗}

d〈S̃1〉t

= exp(−rt)
[
σvL∗(S̃

1
t )S̃1

t dWt

+
(
− rvL∗(S̃1

t ) + rv′L∗(S̃
1
t )S̃1

t +
1

2
σ2(S̃1

t )2v′′L∗(S̃
1
t )1{S̃1

t 6=L∗}

)
dt
]
. (22)

It follows from (21) that Ṽ is a local P-supermartingale. Since it is nonnegative, Fatou’s
lemma implies that it is even a true P-supermartingale.
Finally, by part (b), exp(−rt)vL∗(s) ≥ exp(−rt)(K−s)+ for all s ∈ (0,∞) and t ≥ 0. This
together with the stopping theorem for supermartingales gives,

vL∗(s) ≥ sup
τ∈S0,∞

E[exp(−rτ)vL∗(S̃
1
τ )] ≥ sup

τ∈S0,∞
E

[
(K − S̃1

τ )+

S̃0
τ

]
= v(s). (23)

Since trivially vL∗(s) ≤ v(s) for all s ∈ (0,∞), this establishes the claim.

Solution 4-4

(a) “⇒”: Seeking a contradiction, suppose that S fails NA. Then there exists ϑ ∈ Rd \ {0}
such that ϑtr∆S1 ≥ 0 P-a.s. and P[ϑtr∆S1 > 0] > 0. In particular, ϑ ∈ A(0). But then
also for each λ > 0, λϑ ∈ A(0), and so A(0) is not bounded and hence not compact. Since
A(0) ⊂ A(x), we arrive at a contradiction.
“⇐”: Seeking a contradiction, suppose that A(x) is not compact. Since A(x) is clearly
closed, this means that A(x) is not bounded. Hence, there exists a sequence (ϑn)n∈N
in A(x) \ {0} such that limn→∞ ‖ϑn‖∞ = +∞. For n ∈ N, define ηn := ϑn

‖ϑn‖∞ . Then
‖ηn‖∞ = 1 by construction for each n ∈ N. Since the unit ball (with respect to the
maximum norm) in Rd is compact, there exists a subsequence, denoted also by (ηn)n∈N,
converging to some η ∈ Rd with ‖η‖∞ = 1. Using that ϑn ∈ A(x) for all n ∈ N and
limn→∞ ‖ϑn‖∞ = +∞ gives

ηtr∆S1 = lim
n→∞

ηtrn ∆S1 = lim
n→∞

ϑtrn ∆S1

‖ϑn‖∞
≥ lim inf

n→∞

−x
‖ϑn‖∞

= 0 P-a.s. (24)

Since η 6= 0, it follows from the non-redundancy of S that P[ηtr∆S1 > 0] > 0. Thus, η is
an arbitrage opportunity, and we arrive at a contradiction.



(b) “⇒”: Seeking a contradiction, suppose that S fails NA. Then there exists ϑ ∈ Rd \ {0}
such that ϑtr∆S1 ≥ 0 P-a.s. and P[ϑtr∆S1 > 0] > 0. Then by monotone convergence and
by the fact that U(∞) = +∞,

lim
λ→∞

E[U(x+ λϑtr∆S1)] = U(x)P[ϑtr∆S1 = 0] + U(∞)P[ϑtr∆S1 > 0] = +∞, (25)

Since λϑ ∈ A(x) for all λ > 0 as in part (a), this implies that u(x) = +∞, and we arrive
at a contradiction.
“⇐”: Since A(x) is compact by part (a), there exists c > 0 such that ‖ϑ‖∞ ≤ c for all
ϑ ∈ A(x). This together with concavity of U shows that for all ϑ ∈ A(x),

U(x+ ϑtr∆S1) ≤ U(x) + U ′(x)(ϑtr∆S1) ≤ U(x) + cU ′(x)

d∑
i=1

|∆Si1| =: Y. (26)

Note that Y is integrable since E[|∆Si1|] < ∞ for i ∈ {1, . . . , d} by hypothesis and by the
fact that F0 is trivial. Thus

u(x) = sup
ϑ∈A(x)

E[U(x+ ϑtr∆S1)] ≤ E[Y ] <∞. (27)

(c) Note that u(x) <∞ by part (b).
First, we establish existence of ϑ∗. Let (ϑn)n∈N be a sequence in A(x) such that

lim
n→∞

E[U(x+ ϑtrn ∆S1)] = u(x). (28)

Since A(x) is compact by part (a), there exists a subsequence, denoted again by (ϑn)n∈N,
converging to some ϑ∗ ∈ A(x). Now by Fatou’s lemma using (26), and the fact that
ϑ∗ ∈ A(x),

u(x) = lim
n→∞

E[U(x+ ϑtrn ∆S1)] ≤ E
[
lim sup
n→∞

U(x+ ϑtrn ∆S1)

]
= E

[
U(x+ (ϑ∗)tr∆S1)

]
≤ u(x). (29)

Next, we establish uniqueness of ϑ∗. To this end, let ϑ̃∗ ∈ A(x) be another maximiser
of E[U(x + ϑtr∆S1)]. Set ϑ̂∗ := 1

2ϑ
∗ + 1

2 ϑ̃
∗. Then ϑ̂∗ ∈ A(x) by convexity of A(x). By

concavity of U on [0,∞),

U(x+ (ϑ̂∗)tr∆S1) ≥ 1

2
U(x+ (ϑ∗)tr∆S1) +

1

2
U(x+ (ϑ̃∗)tr∆S1). (30)

Moreover, by strict concavity of U on (0,∞), by strict concavity of U on [0,∞) in case
that U(0) > −∞ and by the fact that x+ (ϑ∗)tr∆S1, x+ (ϑ̃∗)tr∆S1 > 0 P-a.s. in case that
U(0) = −∞, the inequality in (30) is strict on {(ϑ∗)tr∆S1 6= (ϑ̃∗)tr∆S1}. On the other
hand, by maximality of ϑ∗ and ϑ̃∗, it follows that

E[U(x+ (ϑ̂∗)tr∆S1)] ≤ 1

2
E[U(x+ (ϑ∗)tr∆S1)] +

1

2
E[U(x+ (ϑ̃∗)tr∆S1)].

Thus, we may conclude that (ϑ∗)tr∆S1 = (ϑ̃∗)tr∆S1 P-a.s. Now non-redundancy of S gives
ϑ̃∗ = ϑ∗.
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(a) Fix 0 ≤ a < b < c. Then there exists λ ∈ (0, 1) such that b = λc+ (1− λ)a. By concavity
of U ,
U(b)− U(a)

b− a
=
U(λc+ (1− λ)a)− U(a)

λ(c− a)
≥ λ(U(c)− U(a))

λ(c− a)
=
U(c)− U(a)

c− a

=
(1− λ)(U(c)− U(a))

(1− λ)(c− a)
≥ U(c)− U(λc+ (1− λ)a)

(1− λ)(c− a)
=
U(c)− U(b)

c− b
. (31)

For z < y′ < y′′, setting a := z, b := y′ and c := y′′ shows that y 7→ U(y)−U(z)
y−z is decreasing

on (z,∞), for y′ < y′′ < z, setting a := y′, b := y′′ and c := z shows that y 7→ U(y)−U(z)
y−z

is also decreasing on (0, z), and for y′ < z < y′′, setting a := y′, b := z and c := y′′,
establishes that y 7→ U(y)−U(z)

y−z is decreasing everywhere on (0,∞) \ {z}.

(b) Let η ∈ Rd \ {0} be arbitrary. Since ϑ∗ is an interior point of A(x), ϑ∗ + εη ∈ A(x) for all
ε > 0 sufficiently small. For ε > 0 sufficiently small, set

∆η
ε :=

U(x+ (ϑ∗ + εη)tr∆S1)− U(x+ (ϑ∗)tr∆S1)

ε
. (32)

Then on {ηtr∆S1 6= 0},

∆η
ε = (ηtr∆S1)

U(x+ (ϑ∗ + εη)tr∆S1)− U(x+ (ϑ∗)tr∆S1)

εηtr∆S1
, (33)

and by part (a), this increases monotonically to (ηtr∆S1)U ′(x+(ϑ∗)tr∆S1) > −∞ as ε ↓ 0.
In particular, for η := ϑ∗, using that U ′ < +∞ on (0,∞) and (ϑ∗)tr∆S1 = −x < 0 on
{x+ (ϑ∗)tr∆S1 = 0}, this gives U ′(x+ (ϑ∗)tr∆S1) <∞ P-a.s.
On the other hand, on {ηtr∆S1 = 0}, ∆η

ε ≡ 0, and this trivially increases monotonically
to (ηtr∆S1)U ′(x+ (ϑ∗)tr∆S1) as ε ↓ 0.
Now by the fact that U is increasing, by the fact that U(0) > −∞ and by optimality of
ϑ∗, for ε > 0 sufficiently small,

U(0)− U(x+ (ϑ∗)tr∆S1)

ε
≤ ∆η

ε . (34)

Thus, ∆η
ε ∈ L1(P) for ε sufficiently small, and so by the above and monotone convergence,

(ηtr∆S1)U ′(x+ (ϑ∗)tr∆S1) ∈ L1(P) and

E[(ηtr∆S1)U ′(x+ (ϑ∗)tr∆S1)] ≤ 0. (35)

The final claim follows by setting η := (1, 0, . . . , 0), η = (−1, 0, . . . , 0), η := (0, 1, 0, . . . , 0),
η := (0,−1, 0, . . . , 0), . . ., η := (0, . . . , 0, 1) and η := (0, . . . , 0,−1).

(c) Using that U ′(x+ (ϑ∗)tr∆S1) ∈ (0,∞) P-a.s. by strict concavity of U on (0,∞) and part
(b) and that E[U ′(x + (ϑ∗)tr∆S1)∆Si1] = 0 for all i ∈ {1, . . . , d}, it suffices to show that
U ′(x+ (ϑ∗)tr∆S1) ∈ L1(P). Since U ′ is decreasing on (0,∞), it even suffices to show that

U ′(x+ (ϑ∗)tr∆S1)1{x+(ϑ∗)tr∆S1≤x/2} ∈ L
1(P). (36)

Since ((ϑ∗)tr∆S1)U ′(x+ (ϑ∗)tr∆S1) ∈ L1(P) by part (b),

E[U ′(x+ (ϑ∗)tr∆S1)1{x+(ϑ∗)tr∆S1≤x/2}]

= E[U ′(x+ (ϑ∗)tr∆S1)1{(ϑ∗)tr∆S1≤−x/2}]

≤
E[−((ϑ∗)tr∆S1)U ′(x+ (ϑ∗)tr∆S1)1{(ϑ∗)tr∆S1≤−x/2}]

x/2

≤ 2

x
E[|(ϑ∗)tr∆S1|U ′(x+ (ϑ∗)tr∆S1)] <∞. (37)


