Mathematical Finance
 Exercise Sheet 4

Solution 4-1

For convenience, define the process $\widetilde{H}=\left(\widetilde{H}_{k}\right)_{k=0, \ldots, T}$ by $\widetilde{H}_{k}:=U\left(H_{k}\right), k \in\{0, \ldots, T\}$. Moreover, note that by a result in the lecture notes, \bar{V} is a \mathbb{P}-supermartingale and satisfies

$$
\begin{equation*}
\bar{V}_{k}=\underset{\tau \in \mathcal{S}_{k, T}}{\operatorname{ess} \sup } \mathbb{E}\left[U\left(H_{\tau}\right) \mid \mathscr{F}_{k}\right] \mathbb{P} \text {-a.s. } \tag{1}
\end{equation*}
$$

(a) For $k=T$ the claim is trivial. So assume that $k<T$. Let $k \leq \ell<T$. Using that $\bar{V}_{\ell}=\mathbb{E}\left[\bar{V}_{\ell+1} \mid \mathscr{F}_{\ell}\right]$ on $\left\{\tau_{k}^{*}>\ell\right\}$ since $\widetilde{H}_{\ell}<\bar{V}_{\ell}$ on $\left\{\tau_{k}^{*}>\ell\right\}$ and $\bar{V}_{\ell+1}^{\tau_{\tau_{k}^{*}}^{*}}=\bar{V}_{\ell}^{\tau_{k}^{*}}$ on $\left\{\tau_{k}^{*} \leq \ell\right\}$ gives

$$
\begin{align*}
\mathbb{E}\left[\bar{V}_{\ell+1}^{\tau_{k}^{*}} \mid \mathscr{F}_{\ell}\right] & =\mathbb{E}\left[\bar{V}_{\ell+1} \mid \mathscr{F}_{\ell}\right] \mathbb{1}_{\left\{\tau_{\tau}^{*}>\ell\right\}}+\bar{V}_{\ell}^{\tau_{k}^{*}} \mathbb{1}_{\left\{\tau_{\left.\tau^{*} \leq \ell\right\}}\right.} \\
& =\bar{V}_{\ell} \mathbb{1}_{\left\{\tau_{k}^{*}>\ell\right\}}+\bar{V}_{\ell}^{\tau_{k}^{*}} \mathbb{1}_{\left\{\tau_{k}^{*} \leq \ell\right\}}=\bar{V}_{\ell}^{\tau_{k}^{*}} \mathbb{P} \text {-a.s. } \tag{2}
\end{align*}
$$

Thus, $\bar{V}^{\tau_{k}^{*}}$ is a \mathbb{P}-martingale on $\{k, \ldots, T\}$. This together with the fact that $\bar{V}_{\tau_{k}^{*}}=\widetilde{H}_{\tau_{k}^{*}}$ by the definition of τ_{k}^{*} and (1) gives

$$
\begin{equation*}
\mathbb{E}\left[U\left(H_{\tau_{k}^{*}}\right) \mid \mathscr{F}_{k}\right]=\mathbb{E}\left[\bar{V}_{\tau_{k}^{*}} \mid \mathscr{F}_{k}\right]=\bar{V}_{k}^{\tau_{k}^{*}}=\bar{V}_{k}=\underset{\tau \in \mathcal{S}_{k, T}}{\operatorname{ess} \sup } \mathbb{E}\left[U\left(H_{\tau}\right) \mid \mathscr{F}_{k}\right] \text { P-a.s. } \tag{3}
\end{equation*}
$$

(b) By the results in the lecture notes (adapted to our setup), there exist a predictable process $\vartheta=\left(\vartheta_{k}^{1}, \ldots, \vartheta_{k}^{d}\right)_{k=1, \ldots, T}$ and an increasing, adapted process $C=\left(C_{k}\right)_{k=0, \ldots, T}$ null at 0 such that $\bar{V}=\bar{V}_{0}+\vartheta \bullet S-C$ P-a.s. Moreover, by part (a), the stopped process $\bar{V}^{\tau_{0}^{*}}$ is a \mathbb{P}-martingale. Thus,

$$
\begin{equation*}
\mathbb{E}\left[\vartheta \bullet S_{\tau_{0}^{*}}-C_{\tau_{0}^{*}}\right]=0 \tag{4}
\end{equation*}
$$

Since the local P-martingale $\vartheta \bullet S$ is uniformly bounded from below by $-\bar{V}_{0}$, it is even a true \mathbb{P}-martingale by Exercise 3-1 (a). Hence, we may conclude that $\mathbb{E}\left[C_{\tau_{0}^{*}}\right]=0$. Since C is nonnegative and increasing, this implies that $C \equiv 0 \mathbb{P}-\mathrm{a} . \mathrm{s}$. on $\llbracket 0, \tau_{0}^{*} \rrbracket$. Then

$$
\bar{V}_{0}+\vartheta \bullet S_{\tau_{0}^{*}}=\bar{V}_{\tau_{0}^{*}}=\widetilde{H}_{\tau_{0}^{*}},
$$

where the last equality follows from the definition of τ_{0}^{*}.
(a) First, suppose that there exists a buyer arbitrage. Then using that $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_{T}, there exist a predictable process $\vartheta=\left(\vartheta_{k}^{1}, \ldots, \vartheta_{k}^{d}\right)_{k=1, \ldots, T}$, a constant $c>0$ and a stopping time $\tau \in \mathcal{S}_{0, T}$ such that

$$
\vartheta \bullet S_{\tau}+c\left(H_{\tau}-S_{0}^{H}\right) \geq 0 \quad \mathbb{Q}-\mathrm{a.s.} \quad \text { and } \quad \mathbb{Q}\left[\vartheta \bullet S_{\tau}+c\left(H_{\tau}-S_{0}^{H}\right)>0\right]>0
$$

Thus,

$$
\begin{equation*}
\mathbb{E}_{\mathbb{Q}}\left[\vartheta \bullet S_{\tau}+c\left(H_{\tau}-S_{0}^{H}\right)\right]>0 \tag{5}
\end{equation*}
$$

Since H is bounded, it follows that $\left(\vartheta \bullet S_{T}^{\tau}\right)^{-} \in L^{1}(\mathbb{Q})$. Since $\vartheta \bullet S^{\tau}$ is a local \mathbb{Q}-martingale, Exercise 3-1 (a) implies that $\vartheta \bullet S^{\tau}$ is even a true \mathbb{Q}-martingale. Thus, $\mathbb{E}_{\mathbb{Q}}\left[\vartheta \bullet S_{\tau}\right]=0$ and

$$
\begin{equation*}
\mathbb{E}_{\mathbb{Q}}\left[H_{\tau}\right]>S_{0}^{H} \tag{6}
\end{equation*}
$$

This shows that $S_{0}^{H}<\sup _{\tau \in \mathcal{S}_{0, T}} \mathbb{E}_{\mathbb{Q}}\left[H_{\tau}\right]$.
Conversely, suppose that $S_{0}^{H}<\sup _{\tau \in \mathcal{S}_{0, T}} \mathbb{E}_{\mathbb{Q}}\left[H_{\tau}\right]$. Let \bar{V}, τ_{0}^{*} and ϑ be as in Exercise 4-1 (b) (with \mathbb{P} replaced by \mathbb{Q} and $U(H)$ replaced by H). Then

$$
\begin{equation*}
(-\vartheta) \bullet S_{\tau_{0}^{*}}+\left(H_{\tau_{0}^{*}}-S_{0}^{H}\right)=\bar{V}_{0}-S_{0}^{H}>0 \text { P-a.s. } \tag{7}
\end{equation*}
$$

and so there exists a buyer arbitrage.
(b) First, suppose that there exists a seller arbitrage. Then using that $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_{T}, there exist a predictable process $\vartheta=\left(\vartheta_{k}^{1}, \ldots, \vartheta_{k}^{d}\right)_{k=1, \ldots, T}$ and a constant $c<0$ such that

$$
\begin{equation*}
\vartheta \bullet S_{\tau_{0}^{*}}+c\left(H_{\tau_{0}^{*}}-S_{0}^{H}\right) \geq 0 \quad \mathbb{Q} \text {-a.s. } \quad \text { and } \quad \mathbb{Q}\left[\vartheta \bullet S_{\tau_{0}^{*}}+c\left(H_{\tau_{0}^{*}}-S_{0}^{H}\right)>0\right]>0 \tag{8}
\end{equation*}
$$

where τ_{0}^{*} satisfies

$$
\begin{equation*}
\mathbb{E}_{\mathbb{Q}}\left[H_{\tau_{0}^{*}}\right]=\sup _{\tau \in \mathcal{S}_{0, T}} \mathbb{E}_{\mathbb{Q}}\left[H_{\tau}\right] \tag{9}
\end{equation*}
$$

The existence of τ_{0}^{*} follows from Exercise 4-1 (a). Then as in part (a), $\vartheta \bullet S^{\tau_{0}^{*}}$ is a true Q-martingale and so

$$
\begin{equation*}
\mathbb{E}_{\mathbb{Q}}\left[H_{\tau_{0}^{*}}\right]<S_{0}^{H} \tag{10}
\end{equation*}
$$

Conversely, suppose that $S_{0}^{H}>\sup _{\tau \in \mathcal{S}_{0, T}} \mathbb{E}_{\mathbb{Q}}\left[H_{\tau}\right]$. By a result in the lecture notes, there exists a predictable process $\vartheta=\left(\vartheta_{k}^{1}, \ldots, \vartheta_{k}^{d}\right)_{k=1, \ldots, T}$ such that

$$
\begin{equation*}
\sup _{\tau \in \mathcal{S}_{0, T}} \mathbb{E}_{\mathbb{Q}}\left[H_{\tau}\right]+\vartheta \bullet S \geq H \text { P-a.s. } \tag{11}
\end{equation*}
$$

Thus, for each stopping time $\tau \in \mathcal{S}_{0, T}$,

$$
\begin{equation*}
\vartheta \bullet S_{\tau}-\left(H_{\tau}-S_{0}^{H}\right) \geq-\sup _{\tau \in \mathcal{S}_{0, T}} \mathbb{E}_{\mathbb{Q}}\left[H_{\tau}\right]+S_{0}^{H}>0 \text { P-a.s. } \tag{12}
\end{equation*}
$$

and so there exists a seller arbitrage.

Solution 4-3

(a) Since $r<\frac{\sigma^{2}}{2}, \widetilde{S}_{t}^{1}=s \exp \left(\sigma W_{t}+\left(r-\frac{\sigma^{2}}{2}\right) t\right)$ converges \mathbb{P}-a.s. to 0 as $t \rightarrow \infty$. Therefore $\tau_{L}<\infty \mathbb{P}$-a.s. for all $L \in(0, K)$.
First, if $s \leq L$, then $\tau_{L}=0$ and so $v_{L}(s)=K-s$. Next, if $s>L$, then $\tau_{L}=\sigma_{a, b}$ with $a=\frac{1}{\sigma} \log \frac{s}{L}$ and $b=\frac{\sigma}{2}-\frac{r}{\sigma}$. Moreover, $\widetilde{S}_{\tau_{L}}^{1}=L$ and therefore using the hint,

$$
\begin{align*}
v_{L}(s) & =\mathbb{E}\left[\exp \left(-r \tau_{L}\right)(K-L)\right] \\
& =(K-L) \exp \left(-\frac{1}{\sigma} \log \frac{s}{L}\left(\sqrt{\frac{\sigma^{2}}{4}-r+\frac{r^{2}}{\sigma^{2}}+2 r}-\frac{\sigma}{2}+\frac{r}{\sigma}\right)\right) \\
& =(K-L)\left(\frac{s}{L}\right)^{-\frac{1}{\sigma}\left(\frac{\sigma}{2}+\frac{r}{\sigma}-\frac{\sigma}{2}+\frac{r}{\sigma}\right)}=(K-L)\left(\frac{s}{L}\right)^{-\frac{2 r}{\sigma^{2}}} \tag{13}
\end{align*}
$$

Note that (13) also holds for $s=L$, i.e., the function $v_{L}(s)$ is continuous on $(0, \infty)$.
(b) First, define the function $g:(0, K) \rightarrow(0, \infty)$ by $g(L):=(K-L) L^{\frac{2 r}{\sigma^{2}}}$. Then g is in $C^{1}((0, K))$ with $\lim _{L \downarrow \downarrow 0} g(L)=0$ and $\lim _{L \uparrow \uparrow K} g(L)=0$, and

$$
\begin{equation*}
g^{\prime}(L)=\frac{2 r}{\sigma^{2}} K L^{\frac{2 r}{\sigma^{2}}-1}-\left(\frac{2 r}{\sigma^{2}}+1\right) L^{\frac{2 r}{\sigma^{2}}}=\frac{L^{\frac{2 r}{\sigma^{2}}-1}}{\sigma^{2}}\left(2 r K-\left(2 r+\sigma^{2}\right) L\right) \tag{14}
\end{equation*}
$$

Solving for $g^{\prime}=0$ shows that $L^{*}:=\frac{2 r}{2 r+\sigma^{2}} K$ is the unique maximiser of g in $(0, K)$. Second, for $L \in(0, K)$, define the function $h_{L}:(0, \infty) \rightarrow(0, \infty)$ by $h_{L}(s)=s^{-\frac{2 r}{\sigma^{2}}} g(L)$. Then $h_{L^{*}}\left(L^{*}\right)=K-L^{*}$ and

$$
\begin{equation*}
h_{L^{*}}^{\prime}\left(L^{*}\right)=\frac{-2 r}{\sigma^{2} L^{*}} h_{L^{*}}\left(L^{*}\right)=\frac{-2 r}{\sigma^{2}}\left(\frac{K-\frac{2 r}{2 r+\sigma^{2}} K}{\frac{2 r}{2 r+\sigma^{2}} K}\right)=-1 \tag{15}
\end{equation*}
$$

Third, for $L \in(0, K)$, note that $v_{L}(s)=(K-s) \mathbb{1}_{\{s \leq L\}}+h_{L}(s) \mathbb{1}_{\{s>L\}}$ for all $s \in(0, \infty)$. Since $h_{L^{*}}$ is strictly convex, for $s \in\left(L^{*}, K\right]$,

$$
\begin{equation*}
h_{L^{*}}(s)>h_{L^{*}}\left(L^{*}\right)+h_{L^{*}}^{\prime}\left(L^{*}\right)\left(s-L^{*}\right)=\left(K-L^{*}\right)-\left(s-L^{*}\right)=K-s \tag{16}
\end{equation*}
$$

This shows that $v_{L^{*}}(s) \geq(K-s)^{+}$for all $s \in(0, \infty)$.
Finally, fix $L \in(0, K)$. We show that $v_{L} \leq v_{L^{*}}$. Indeed, by the above, for $s \leq L$,

$$
\begin{equation*}
v_{L}(s)=K-s \leq v_{L^{*}}(s) \tag{17}
\end{equation*}
$$

Moreover, for $s \geq \max \left(L^{*}, L\right)$,

$$
\begin{equation*}
v_{L}(s)=h_{L}(s)=s^{-\frac{2 r}{\sigma^{2}}} g(L) \leq s^{-\frac{2 r}{\sigma^{2}}} g\left(L^{*}\right)=h_{L^{*}}(s)=v_{L^{*}}(s) \tag{18}
\end{equation*}
$$

If $L \geq L^{*}$, this establishes the claim. Otherwise, let $s \in\left(L, L^{*}\right)$. Then there exists $\lambda \in(0,1)$ such that $s=\lambda L+(1-\lambda) L^{*}$. Then by convexity of h_{L} and using that $h_{L} \leq h_{L^{*}}$ as $g(L) \leq g\left(L^{*}\right)$,

$$
\begin{align*}
v_{L}(s) & =h_{L}(s)=h_{L}\left(\lambda L+(1-\lambda) L^{*}\right) \leq \lambda h_{L}(L)+(1-\lambda) h_{L}\left(L^{*}\right) \\
& \leq \lambda h_{L}(L)+(1-\lambda) h_{L^{*}}\left(L^{*}\right)=\lambda(K-L)+(1-\lambda)\left(K-L^{*}\right) \\
& =K-s=v_{L^{*}}(s) \tag{19}
\end{align*}
$$

(c) Define the function $f:(0, \infty) \rightarrow \mathbb{R}$ by $f(s):=K-s$. Then $v_{L^{*}} \in C^{2}\left(\left(0, L^{*}\right) \cup\left(L^{*}, \infty\right)\right)$ by the fact that $f, h_{L^{*}} \in C^{2}((0, \infty))$. Moreover, $v_{L^{*}} \in C^{1}((0, \infty))$ as $f\left(L^{*}\right)=h_{L^{*}}\left(L^{*}\right)$ and $f^{\prime}\left(L^{*}\right)=h_{L^{*}}^{\prime}\left(L^{*}\right)$. For $s \in(0, \infty)$, a simple differentiation gives

$$
\begin{gather*}
-r f(s)+r s f^{\prime}(s)+\frac{1}{2} \sigma^{2} s^{2} f^{\prime \prime}(s)=-r(K-s)-r s+0=-r K \leq 0 \\
-r h_{L^{*}}(s)+r s h_{L^{*}}^{\prime}(s)+\frac{1}{2} \sigma^{2} s^{2} h_{L^{*}}^{\prime \prime}(s)=g\left(L^{*}\right) s^{\frac{-2 r}{\sigma^{2}}}\left(-r-\frac{2 r^{2}}{\sigma^{2}}-r\left(\frac{-2 r}{\sigma^{2}}-1\right)\right)=0 \tag{20}
\end{gather*}
$$

This implies that

$$
\begin{equation*}
-r v_{L^{*}}(s)+r s v_{L^{*}}^{\prime}(s)+\frac{1}{2} \sigma^{2} s^{2} v_{L^{*}}^{\prime \prime}(s) \leq 0, \quad s \in(0, \infty) \backslash\left\{L^{*}\right\} \tag{21}
\end{equation*}
$$

Next, by Itô's formula using the hint,

$$
\begin{align*}
\mathrm{d} \widetilde{V}_{t}= & -r \exp (-r t) v_{L^{*}}\left(\widetilde{S}_{t}^{1}\right) \mathrm{d} t+\exp (-r t) v_{L^{*}}^{\prime}\left(\widetilde{S}_{t}^{1}\right) \mathrm{d} \widetilde{S}_{t}^{1} \\
& +\frac{1}{2} \exp (-r t) v_{L^{*}}^{\prime \prime}\left(\widetilde{S}_{t}^{1}\right) \mathbb{1}_{\left\{\widetilde{S}_{t}^{1} \neq L^{*}\right\}} \mathrm{d}\left\langle\widetilde{S}^{1}\right\rangle_{t} \\
= & \exp (-r t)\left[\sigma v_{L^{*}}\left(\widetilde{S}_{t}^{1}\right) \widetilde{S}_{t}^{1} \mathrm{~d} W_{t}\right. \\
& \left.+\left(-r v_{L^{*}}\left(\widetilde{S}_{t}^{1}\right)+r v_{L^{*}}^{\prime}\left(\widetilde{S}_{t}^{1}\right) \widetilde{S}_{t}^{1}+\frac{1}{2} \sigma^{2}\left(\widetilde{S}_{t}^{1}\right)^{2} v_{L^{*}}^{\prime \prime}\left(\widetilde{S}_{t}^{1}\right) \mathbb{1}_{\left\{\widetilde{S}_{t}^{1} \neq L^{*}\right\}}\right) \mathrm{d} t\right] \tag{22}
\end{align*}
$$

It follows from (21) that \widetilde{V} is a local \mathbb{P}-supermartingale. Since it is nonnegative, Fatou's lemma implies that it is even a true \mathbb{P}-supermartingale.
Finally, by part (b), $\exp (-r t) v_{L^{*}}(s) \geq \exp (-r t)(K-s)^{+}$for all $s \in(0, \infty)$ and $t \geq 0$. This together with the stopping theorem for supermartingales gives,

$$
\begin{equation*}
v_{L^{*}}(s) \geq \sup _{\tau \in \mathcal{S}_{0, \infty}} \mathbb{E}\left[\exp (-r \tau) v_{L^{*}}\left(\widetilde{S}_{\tau}^{1}\right)\right] \geq \sup _{\tau \in \mathcal{S}_{0, \infty}} \mathbb{E}\left[\frac{\left(K-\widetilde{S}_{\tau}^{1}\right)^{+}}{\widetilde{S}_{\tau}^{0}}\right]=v(s) \tag{23}
\end{equation*}
$$

Since trivially $v_{L^{*}}(s) \leq v(s)$ for all $s \in(0, \infty)$, this establishes the claim.

Solution 4-4

(a) " \Rightarrow ": Seeking a contradiction, suppose that S fails NA. Then there exists $\vartheta \in \mathbb{R}^{d} \backslash\{0\}$ such that $\vartheta^{t r} \Delta S_{1} \geq 0 \mathbb{P}$-a.s. and $\mathbb{P}\left[\vartheta^{t r} \Delta S_{1}>0\right]>0$. In particular, $\vartheta \in \mathcal{A}(0)$. But then also for each $\lambda>0, \lambda \vartheta \in \mathcal{A}(0)$, and so $\mathcal{A}(0)$ is not bounded and hence not compact. Since $\mathcal{A}(0) \subset \mathcal{A}(x)$, we arrive at a contradiction.
$" \Leftarrow "$ Seeking a contradiction, suppose that $\mathcal{A}(x)$ is not compact. Since $\mathcal{A}(x)$ is clearly closed, this means that $\mathcal{A}(x)$ is not bounded. Hence, there exists a sequence $\left(\vartheta_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{A}(x) \backslash\{0\}$ such that $\lim _{n \rightarrow \infty}\left\|\vartheta_{n}\right\|_{\infty}=+\infty$. For $n \in \mathbb{N}$, define $\eta_{n}:=\frac{\vartheta_{n}}{\left\|\vartheta_{n}\right\|_{\infty}}$. Then $\left\|\eta_{n}\right\|_{\infty}=1$ by construction for each $n \in \mathbb{N}$. Since the unit ball (with respect to the maximum norm) in \mathbb{R}^{d} is compact, there exists a subsequence, denoted also by $\left(\eta_{n}\right)_{n \in \mathbb{N}}$, converging to some $\eta \in \mathbb{R}^{d}$ with $\|\eta\|_{\infty}=1$. Using that $\vartheta_{n} \in \mathcal{A}(x)$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty}\left\|\vartheta_{n}\right\|_{\infty}=+\infty$ gives

$$
\begin{equation*}
\eta^{t r} \Delta S_{1}=\lim _{n \rightarrow \infty} \eta_{n}^{t r} \Delta S_{1}=\lim _{n \rightarrow \infty} \frac{\vartheta_{n}^{t r} \Delta S_{1}}{\left\|\vartheta_{n}\right\|_{\infty}} \geq \liminf _{n \rightarrow \infty} \frac{-x}{\left\|\vartheta_{n}\right\|_{\infty}}=0 \text { P-a.s. } \tag{24}
\end{equation*}
$$

Since $\eta \neq 0$, it follows from the non-redundancy of S that $\mathbb{P}\left[\eta^{t r} \Delta S_{1}>0\right]>0$. Thus, η is an arbitrage opportunity, and we arrive at a contradiction.
(b) " \Rightarrow ": Seeking a contradiction, suppose that S fails NA. Then there exists $\vartheta \in \mathbb{R}^{d} \backslash\{0\}$ such that $\vartheta^{t r} \Delta S_{1} \geq 0 \mathbb{P}-$ a.s. and $\mathbb{P}\left[\vartheta^{t r} \Delta S_{1}>0\right]>0$. Then by monotone convergence and by the fact that $U(\infty)=+\infty$,

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \mathbb{E}\left[U\left(x+\lambda \vartheta^{t r} \Delta S_{1}\right)\right]=U(x) \mathbb{P}\left[\vartheta^{t r} \Delta S_{1}=0\right]+U(\infty) \mathbb{P}\left[\vartheta^{t r} \Delta S_{1}>0\right]=+\infty \tag{25}
\end{equation*}
$$

Since $\lambda \vartheta \in \mathcal{A}(x)$ for all $\lambda>0$ as in part (a), this implies that $u(x)=+\infty$, and we arrive at a contradiction.
$" \Leftarrow "$: Since $\mathcal{A}(x)$ is compact by part (a), there exists $c>0$ such that $\|\vartheta\|_{\infty} \leq c$ for all $\vartheta \in \mathcal{A}(x)$. This together with concavity of U shows that for all $\vartheta \in \mathcal{A}(x)$,

$$
\begin{equation*}
U\left(x+\vartheta^{t r} \Delta S_{1}\right) \leq U(x)+U^{\prime}(x)\left(\vartheta^{t r} \Delta S_{1}\right) \leq U(x)+c U^{\prime}(x) \sum_{i=1}^{d}\left|\Delta S_{1}^{i}\right|=: Y \tag{26}
\end{equation*}
$$

Note that Y is integrable since $\mathbb{E}\left[\left|\Delta S_{1}^{i}\right|\right]<\infty$ for $i \in\{1, \ldots, d\}$ by hypothesis and by the fact that \mathscr{F}_{0} is trivial. Thus

$$
\begin{equation*}
u(x)=\sup _{\vartheta \in \mathcal{A}(x)} \mathbb{E}\left[U\left(x+\vartheta^{t r} \Delta S_{1}\right)\right] \leq \mathbb{E}[Y]<\infty \tag{27}
\end{equation*}
$$

(c) Note that $u(x)<\infty$ by part (b).

First, we establish existence of ϑ^{*}. Let $\left(\vartheta_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{A}(x)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left[U\left(x+\vartheta_{n}^{t r} \Delta S_{1}\right)\right]=u(x) \tag{28}
\end{equation*}
$$

Since $\mathcal{A}(x)$ is compact by part (a), there exists a subsequence, denoted again by $\left(\vartheta_{n}\right)_{n \in \mathbb{N}}$, converging to some $\vartheta^{*} \in \mathcal{A}(x)$. Now by Fatou's lemma using (26), and the fact that $\vartheta^{*} \in \mathcal{A}(x)$,

$$
\begin{align*}
u(x) & =\lim _{n \rightarrow \infty} \mathbb{E}\left[U\left(x+\vartheta_{n}^{t r} \Delta S_{1}\right)\right] \leq \mathbb{E}\left[\limsup _{n \rightarrow \infty} U\left(x+\vartheta_{n}^{t r} \Delta S_{1}\right)\right] \\
& =\mathbb{E}\left[U\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right)\right] \leq u(x) \tag{29}
\end{align*}
$$

Next, we establish uniqueness of ϑ^{*}. To this end, let $\widetilde{\vartheta}^{*} \in \mathcal{A}(x)$ be another maximiser of $\mathbb{E}\left[U\left(x+\vartheta^{t r} \Delta S_{1}\right)\right]$. Set $\widehat{\vartheta}^{*}:=\frac{1}{2} \vartheta^{*}+\frac{1}{2} \widetilde{\vartheta}^{*}$. Then $\widehat{\vartheta}^{*} \in \mathcal{A}(x)$ by convexity of $\mathcal{A}(x)$. By concavity of U on $[0, \infty)$,

$$
\begin{equation*}
U\left(x+\left(\widehat{\vartheta}^{*}\right)^{t r} \Delta S_{1}\right) \geq \frac{1}{2} U\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right)+\frac{1}{2} U\left(x+\left(\widetilde{\vartheta}^{*}\right)^{t r} \Delta S_{1}\right) \tag{30}
\end{equation*}
$$

Moreover, by strict concavity of U on $(0, \infty)$, by strict concavity of U on $[0, \infty)$ in case that $U(0)>-\infty$ and by the fact that $x+\left(\vartheta^{*}\right)^{\operatorname{tr}} \Delta S_{1}, x+\left(\widetilde{\vartheta}^{*}\right)^{\operatorname{tr}} \Delta S_{1}>0 \mathbb{P}$-a.s. in case that $U(0)=-\infty$, the inequality in (30) is strict on $\left\{\left(\vartheta^{*}\right)^{\operatorname{tr}} \Delta S_{1} \neq\left(\widetilde{\vartheta}^{*}\right)^{\operatorname{tr}} \Delta S_{1}\right\}$. On the other hand, by maximality of ϑ^{*} and $\widetilde{\vartheta}^{*}$, it follows that

$$
\mathbb{E}\left[U\left(x+\left(\widehat{\vartheta}^{*}\right)^{t r} \Delta S_{1}\right)\right] \leq \frac{1}{2} \mathbb{E}\left[U\left(x+\left(\vartheta^{*}\right)^{\operatorname{tr}} \Delta S_{1}\right)\right]+\frac{1}{2} \mathbb{E}\left[U\left(x+\left(\widetilde{\vartheta}^{*}\right)^{\operatorname{tr}} \Delta S_{1}\right)\right]
$$

Thus, we may conclude that $\left(\vartheta^{*}\right)^{\operatorname{tr}} \Delta S_{1}=\left(\widetilde{\vartheta}^{*}\right)^{t r} \Delta S_{1}$ P-a.s. Now non-redundancy of S gives $\widetilde{\vartheta}^{*}=\vartheta^{*}$.

Solution 4-5

(a) Fix $0 \leq a<b<c$. Then there exists $\lambda \in(0,1)$ such that $b=\lambda c+(1-\lambda) a$. By concavity of U,

$$
\begin{align*}
\frac{U(b)-U(a)}{b-a} & =\frac{U(\lambda c+(1-\lambda) a)-U(a)}{\lambda(c-a)} \geq \frac{\lambda(U(c)-U(a))}{\lambda(c-a)}=\frac{U(c)-U(a)}{c-a} \\
& =\frac{(1-\lambda)(U(c)-U(a))}{(1-\lambda)(c-a)} \geq \frac{U(c)-U(\lambda c+(1-\lambda) a)}{(1-\lambda)(c-a)}=\frac{U(c)-U(b)}{c-b} \tag{31}
\end{align*}
$$

For $z<y^{\prime}<y^{\prime \prime}$, setting $a:=z, b:=y^{\prime}$ and $c:=y^{\prime \prime}$ shows that $y \mapsto \frac{U(y)-U(z)}{y-z}$ is decreasing on (z, ∞), for $y^{\prime}<y^{\prime \prime}<z$, setting $a:=y^{\prime}, b:=y^{\prime \prime}$ and $c:=z$ shows that $y \mapsto \frac{U(y)-U(z)}{y-z}$ is also decreasing on $(0, z)$, and for $y^{\prime}<z<y^{\prime \prime}$, setting $a:=y^{\prime}, b:=z$ and $c:=y^{\prime \prime}$, establishes that $y \mapsto \frac{U(y)-U(z)}{y-z}$ is decreasing everywhere on $(0, \infty) \backslash\{z\}$.
(b) Let $\eta \in \mathbb{R}^{d} \backslash\{0\}$ be arbitrary. Since ϑ^{*} is an interior point of $\mathcal{A}(x), \vartheta^{*}+\epsilon \eta \in \mathcal{A}(x)$ for all $\epsilon>0$ sufficiently small. For $\epsilon>0$ sufficiently small, set

$$
\begin{equation*}
\Delta_{\epsilon}^{\eta}:=\frac{U\left(x+\left(\vartheta^{*}+\epsilon \eta\right)^{t r} \Delta S_{1}\right)-U\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right)}{\epsilon} \tag{32}
\end{equation*}
$$

Then on $\left\{\eta^{t r} \Delta S_{1} \neq 0\right\}$,

$$
\begin{equation*}
\Delta_{\epsilon}^{\eta}=\left(\eta^{t r} \Delta S_{1}\right) \frac{U\left(x+\left(\vartheta^{*}+\epsilon \eta\right)^{t r} \Delta S_{1}\right)-U\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right)}{\epsilon \eta^{t r} \Delta S_{1}} \tag{33}
\end{equation*}
$$

and by part (a), this increases monotonically to $\left(\eta^{\operatorname{tr}} \Delta S_{1}\right) U^{\prime}\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right)>-\infty$ as $\epsilon \downarrow 0$. In particular, for $\eta:=\vartheta^{*}$, using that $U^{\prime}<+\infty$ on $(0, \infty)$ and $\left(\vartheta^{*}\right)^{t r} \Delta S_{1}=-x<0$ on $\left\{x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}=0\right\}$, this gives $U^{\prime}\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right)<\infty$ P-a.s.
On the other hand, on $\left\{\eta^{\operatorname{tr}} \Delta S_{1}=0\right\}, \Delta_{\epsilon}^{\eta} \equiv 0$, and this trivially increases monotonically to $\left(\eta^{t r} \Delta S_{1}\right) U^{\prime}\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right)$ as $\epsilon \downarrow 0$.
Now by the fact that U is increasing, by the fact that $U(0)>-\infty$ and by optimality of ϑ^{*}, for $\epsilon>0$ sufficiently small,

$$
\begin{equation*}
\frac{U(0)-U\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right)}{\epsilon} \leq \Delta_{\epsilon}^{\eta} \tag{34}
\end{equation*}
$$

Thus, $\Delta_{\epsilon}^{\eta} \in L^{1}(\mathbb{P})$ for ϵ sufficiently small, and so by the above and monotone convergence, $\left(\eta^{t r} \Delta S_{1}\right) U^{\prime}\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right) \in L^{1}(\mathbb{P})$ and

$$
\begin{equation*}
\mathbb{E}\left[\left(\eta^{t r} \Delta S_{1}\right) U^{\prime}\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right)\right] \leq 0 \tag{35}
\end{equation*}
$$

The final claim follows by setting $\eta:=(1,0, \ldots, 0), \eta=(-1,0, \ldots, 0), \eta:=(0,1,0, \ldots, 0)$, $\eta:=(0,-1,0, \ldots, 0), \ldots, \eta:=(0, \ldots, 0,1)$ and $\eta:=(0, \ldots, 0,-1)$.
(c) Using that $U^{\prime}\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right) \in(0, \infty) \mathbb{P}$-a.s. by strict concavity of U on $(0, \infty)$ and part (b) and that $\mathbb{E}\left[U^{\prime}\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right) \Delta S_{1}^{i}\right]=0$ for all $i \in\{1, \ldots, d\}$, it suffices to show that $U^{\prime}\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right) \in L^{1}(\mathbb{P})$. Since U^{\prime} is decreasing on $(0, \infty)$, it even suffices to show that

$$
\begin{equation*}
U^{\prime}\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right) \mathbb{1}_{\left\{x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1} \leq x / 2\right\}} \in L^{1}(\mathbb{P}) \tag{36}
\end{equation*}
$$

Since $\left(\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right) U^{\prime}\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right) \in L^{1}(\mathbb{P})$ by part (b),

$$
\begin{align*}
\mathbb{E}\left[U ^ { \prime } \left(x+\left(\vartheta^{*}\right)^{t r}\right.\right. & \left.\left.\Delta S_{1}\right) \mathbb{1}_{\left\{x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1} \leq x / 2\right\}}\right] \\
& =\mathbb{E}\left[U^{\prime}\left(x+\left(\vartheta^{*}\right)^{\operatorname{tr}} \Delta S_{1}\right) \mathbb{1}_{\left\{\left(\vartheta^{*}\right)^{t r} \Delta S_{1} \leq-x / 2\right\}}\right] \\
& \leq \frac{\mathbb{E}\left[-\left(\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right) U^{\prime}\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right) \mathbb{1}_{\left\{\left(\vartheta^{*}\right)^{t r} \Delta S_{1} \leq-x / 2\right\}}\right]}{x / 2} \\
& \leq \frac{2}{x} \mathbb{E}\left[\left|\left(\vartheta^{*}\right)^{\operatorname{tr}} \Delta S_{1}\right| U^{\prime}\left(x+\left(\vartheta^{*}\right)^{t r} \Delta S_{1}\right)\right]<\infty . \tag{37}
\end{align*}
$$

