Mathematical Finance

Exercise Sheet 4

Solution 4-1

For convenience, define the process $\widetilde{H} = (\widetilde{H}_k)_{k=0,\dots,T}$ by $\widetilde{H}_k := U(H_k), k \in \{0,\dots,T\}$. Moreover, note that by a result in the lecture notes, \overline{V} is a \mathbb{P} -supermartingale and satisfies

$$\overline{V}_k = \operatorname*{ess\,sup}_{\tau \in \mathcal{S}_{k,T}} \mathbb{E}[U(H_\tau) \mid \mathscr{F}_k] \quad \mathbb{P}\text{-a.s.} \tag{1}$$

(a) For k=T the claim is trivial. So assume that k< T. Let $k\leq \ell < T$. Using that $\overline{V}_{\ell}=\mathbb{E}[\overline{V}_{\ell+1}\mid \mathscr{F}_{\ell}]$ on $\{\tau_k^*>\ell\}$ since $\widetilde{H}_{\ell}<\overline{V}_{\ell}$ on $\{\tau_k^*>\ell\}$ and $\overline{V}_{\ell+1}^{\tau_k^*}=\overline{V}_{\ell}^{\tau_k^*}$ on $\{\tau_k^*\leq \ell\}$ gives

$$\mathbb{E}[\overline{V}_{\ell+1}^{\tau_k^*} \mid \mathscr{F}_{\ell}] = \mathbb{E}[\overline{V}_{\ell+1} \mid \mathscr{F}_{\ell}] \mathbb{1}_{\{\tau_k^* > \ell\}} + \overline{V}_{\ell}^{\tau_k^*} \mathbb{1}_{\{\tau_k^* \leq \ell\}}$$

$$= \overline{V}_{\ell} \mathbb{1}_{\{\tau_k^* > \ell\}} + \overline{V}_{\ell}^{\tau_k^*} \mathbb{1}_{\{\tau_k^* \leq \ell\}} = \overline{V}_{\ell}^{\tau_k^*} \quad \text{P-a.s.}$$
(2)

Thus, $\overline{V}^{\tau_k^*}$ is a \mathbb{P} -martingale on $\{k,\ldots,T\}$. This together with the fact that $\overline{V}_{\tau_k^*}=\widetilde{H}_{\tau_k^*}$ by the definition of τ_k^* and (1) gives

$$\mathbb{E}[U(H_{\tau_k^*}) \mid \mathscr{F}_k] = \mathbb{E}[\overline{V}_{\tau_k^*} \mid \mathscr{F}_k] = \overline{V}_k^{\tau_k^*} = \overline{V}_k = \underset{\tau \in \mathcal{S}_{k,T}}{\operatorname{ess \, sup}} \, \mathbb{E}[U(H_{\tau}) \mid \mathscr{F}_k] \, \, \mathbb{P}\text{-a.s.}$$
 (3)

(b) By the results in the lecture notes (adapted to our setup), there exist a predictable process $\vartheta = (\vartheta_k^1, \dots, \vartheta_k^d)_{k=1,\dots,T}$ and an increasing, adapted process $C = (C_k)_{k=0,\dots,T}$ null at 0 such that $\overline{V} = \overline{V}_0 + \vartheta \bullet S - C$ P-a.s. Moreover, by part (a), the stopped process $\overline{V}^{\tau_0^*}$ is a P-martingale. Thus,

$$\mathbb{E}[\vartheta \bullet S_{\tau_0^*} - C_{\tau_0^*}] = 0. \tag{4}$$

Since the local \mathbb{P} -martingale $\vartheta \bullet S$ is uniformly bounded from below by $-\overline{V}_0$, it is even a true \mathbb{P} -martingale by Exercise 3-1 (a). Hence, we may conclude that $\mathbb{E}[C_{\tau_0^*}] = 0$. Since C is nonnegative and increasing, this implies that $C \equiv 0$ \mathbb{P} -a.s. on $[0, \tau_0^*]$. Then

$$\overline{V}_0 + \vartheta \bullet S_{\tau_0^*} = \overline{V}_{\tau_0^*} = \widetilde{H}_{\tau_0^*},$$

where the last equality follows from the definition of τ_0^* .

Solution 4-2

(a) First, suppose that there exists a buyer arbitrage. Then using that $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_T , there exist a predictable process $\vartheta = (\vartheta_k^1, \dots, \vartheta_k^d)_{k=1,\dots,T}$, a constant c > 0 and a stopping time $\tau \in \mathcal{S}_{0,T}$ such that

$$\vartheta \bullet S_\tau + c(H_\tau - S_0^H) \geq 0 \quad \mathbb{Q}\text{-a.s.} \quad \text{and} \quad \mathbb{Q}[\vartheta \bullet S_\tau + c(H_\tau - S_0^H) > 0] > 0,$$

Thus,

$$\mathbb{E}_{\mathbb{Q}}[\vartheta \bullet S_{\tau} + c(H_{\tau} - S_0^H)] > 0. \tag{5}$$

Since H is bounded, it follows that $(\vartheta \bullet S_T^{\tau})^- \in L^1(\mathbb{Q})$. Since $\vartheta \bullet S^{\tau}$ is a local \mathbb{Q} -martingale, Exercise 3-1 (a) implies that $\vartheta \bullet S^{\tau}$ is even a true \mathbb{Q} -martingale. Thus, $\mathbb{E}_{\mathbb{Q}}[\vartheta \bullet S_{\tau}] = 0$ and

$$\mathbb{E}_{\mathbb{Q}}[H_{\tau}] > S_0^H. \tag{6}$$

This shows that $S_0^H < \sup_{\tau \in \mathcal{S}_{0,T}} \mathbb{E}_{\mathbb{Q}}[H_{\tau}].$

Conversely, suppose that $S_0^H < \sup_{\tau \in \mathcal{S}_{0,T}} \mathbb{E}_{\mathbb{Q}}[H_{\tau}]$. Let \overline{V} , τ_0^* and ϑ be as in Exercise 4-1 (b) (with \mathbb{P} replaced by \mathbb{Q} and U(H) replaced by H). Then

$$(-\vartheta) \bullet S_{\tau_0^*} + (H_{\tau_0^*} - S_0^H) = \overline{V}_0 - S_0^H > 0 \text{ } \mathbb{P}\text{-a.s.},$$
 (7)

and so there exists a buyer arbitrage.

(b) First, suppose that there exists a seller arbitrage. Then using that $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_T , there exist a predictable process $\vartheta = (\vartheta_k^1, \dots, \vartheta_k^d)_{k=1,\dots,T}$ and a constant c < 0 such that

$$\vartheta \bullet S_{\tau_0^*} + c(H_{\tau_0^*} - S_0^H) \geq 0 \ \ \mathbb{Q} \text{-a.s.} \quad \text{and} \quad \mathbb{Q}[\vartheta \bullet S_{\tau_0^*} + c(H_{\tau_0^*} - S_0^H) > 0] > 0 \qquad (8)$$

where τ_0^* satisfies

$$\mathbb{E}_{\mathbb{Q}}[H_{\tau_0^*}] = \sup_{\tau \in \mathcal{S}_{0,T}} \mathbb{E}_{\mathbb{Q}}[H_{\tau}]. \tag{9}$$

The existence of τ_0^* follows from Exercise 4-1 (a). Then as in part (a), $\vartheta \bullet S^{\tau_0^*}$ is a true Q-martingale and so

$$\mathbb{E}_{\mathbb{Q}}[H_{\tau_0^*}] < S_0^H. \tag{10}$$

Conversely, suppose that $S_0^H > \sup_{\tau \in \mathcal{S}_{0,T}} \mathbb{E}_{\mathbb{Q}}[H_{\tau}]$. By a result in the lecture notes, there exists a predictable process $\vartheta = (\vartheta_k^1, \dots, \vartheta_k^d)_{k=1,\dots,T}$ such that

$$\sup_{\tau \in \mathcal{S}_{0,T}} \mathbb{E}_{\mathbb{Q}}[H_{\tau}] + \vartheta \bullet S \ge H \quad \mathbb{P}\text{-a.s.}$$
 (11)

Thus, for each stopping time $\tau \in \mathcal{S}_{0,T}$,

$$\vartheta \bullet S_{\tau} - (H_{\tau} - S_0^H) \ge -\sup_{\tau \in \mathcal{S}_{0,T}} \mathbb{E}_{\mathbb{Q}}[H_{\tau}] + S_0^H > 0 \quad \mathbb{P}\text{-a.s.}, \tag{12}$$

and so there exists a seller arbitrage.

Solution 4-3

(a) Since $r < \frac{\sigma^2}{2}$, $\widetilde{S}_t^1 = s \exp\left(\sigma W_t + \left(r - \frac{\sigma^2}{2}\right)t\right)$ converges \mathbb{P} -a.s. to 0 as $t \to \infty$. Therefore $\tau_L < \infty$ \mathbb{P} -a.s. for all $L \in (0, K)$.

First, if $s \leq L$, then $\tau_L = 0$ and so $v_L(s) = K - s$. Next, if s > L, then $\tau_L = \sigma_{a,b}$ with $a = \frac{1}{\sigma} \log \frac{s}{L}$ and $b = \frac{\sigma}{2} - \frac{r}{\sigma}$. Moreover, $\widetilde{S}_{\tau_L}^1 = L$ and therefore using the hint,

$$v_L(s) = \mathbb{E}[\exp(-r\tau_L)(K - L)]$$

$$= (K - L)\exp\left(-\frac{1}{\sigma}\log\frac{s}{L}\left(\sqrt{\frac{\sigma^2}{4} - r + \frac{r^2}{\sigma^2} + 2r} - \frac{\sigma}{2} + \frac{r}{\sigma}\right)\right)$$

$$= (K - L)\left(\frac{s}{L}\right)^{-\frac{1}{\sigma}\left(\frac{\sigma}{2} + \frac{r}{\sigma} - \frac{\sigma}{2} + \frac{r}{\sigma}\right)} = (K - L)\left(\frac{s}{L}\right)^{-\frac{2r}{\sigma^2}}.$$
(13)

Note that (13) also holds for s = L, i.e., the function $v_L(s)$ is continuous on $(0, \infty)$.

(b) First, define the function $g:(0,K)\to(0,\infty)$ by $g(L):=(K-L)L^{\frac{2r}{\sigma^2}}$. Then g is in $C^1((0,K))$ with $\lim_{L\downarrow\downarrow 0}g(L)=0$ and $\lim_{L\uparrow\uparrow K}g(L)=0$, and

$$g'(L) = \frac{2r}{\sigma^2} K L^{\frac{2r}{\sigma^2} - 1} - \left(\frac{2r}{\sigma^2} + 1\right) L^{\frac{2r}{\sigma^2}} = \frac{L^{\frac{2r}{\sigma^2} - 1}}{\sigma^2} (2rK - (2r + \sigma^2)L). \tag{14}$$

Solving for g'=0 shows that $L^*:=\frac{2r}{2r+\sigma^2}K$ is the unique maximiser of g in (0,K). Second, for $L\in(0,K)$, define the function $h_L:(0,\infty)\to(0,\infty)$ by $h_L(s)=s^{-\frac{2r}{\sigma^2}}g(L)$. Then $h_{L^*}(L^*)=K-L^*$ and

$$h'_{L^*}(L^*) = \frac{-2r}{\sigma^2 L^*} h_{L^*}(L^*) = \frac{-2r}{\sigma^2} \left(\frac{K - \frac{2r}{2r + \sigma^2} K}{\frac{2r}{2r + \sigma^2} K} \right) = -1.$$
 (15)

Third, for $L \in (0, K)$, note that $v_L(s) = (K - s) \mathbb{1}_{\{s \le L\}} + h_L(s) \mathbb{1}_{\{s > L\}}$ for all $s \in (0, \infty)$. Since h_{L^*} is strictly convex, for $s \in (L^*, K]$,

$$h_{L^*}(s) > h_{L^*}(L^*) + h'_{L^*}(L^*)(s - L^*) = (K - L^*) - (s - L^*) = K - s.$$
 (16)

This shows that $v_{L^*}(s) \geq (K-s)^+$ for all $s \in (0, \infty)$.

Finally, fix $L \in (0, K)$. We show that $v_L \leq v_{L^*}$. Indeed, by the above, for $s \leq L$,

$$v_L(s) = K - s \le v_{L^*}(s). \tag{17}$$

Moreover, for $s \ge \max(L^*, L)$,

$$v_L(s) = h_L(s) = s^{-\frac{2r}{\sigma^2}} g(L) \le s^{-\frac{2r}{\sigma^2}} g(L^*) = h_{L^*}(s) = v_{L^*}(s).$$
(18)

If $L \geq L^*$, this establishes the claim. Otherwise, let $s \in (L, L^*)$. Then there exists $\lambda \in (0, 1)$ such that $s = \lambda L + (1 - \lambda)L^*$. Then by convexity of h_L and using that $h_L \leq h_{L^*}$ as $g(L) \leq g(L^*)$,

$$v_{L}(s) = h_{L}(s) = h_{L}(\lambda L + (1 - \lambda)L^{*}) \leq \lambda h_{L}(L) + (1 - \lambda)h_{L}(L^{*})$$

$$\leq \lambda h_{L}(L) + (1 - \lambda)h_{L^{*}}(L^{*}) = \lambda (K - L) + (1 - \lambda)(K - L^{*})$$

$$= K - s = v_{L^{*}}(s).$$
(19)

(c) Define the function $f:(0,\infty)\to\mathbb{R}$ by f(s):=K-s. Then $v_{L^*}\in C^2((0,L^*)\cup(L^*,\infty))$ by the fact that $f,h_{L^*}\in C^2((0,\infty))$. Moreover, $v_{L^*}\in C^1((0,\infty))$ as $f(L^*)=h_{L^*}(L^*)$ and $f'(L^*)=h'_{L^*}(L^*)$. For $s\in(0,\infty)$, a simple differentiation gives

$$-rf(s) + rsf'(s) + \frac{1}{2}\sigma^2 s^2 f''(s) = -r(K - s) - rs + 0 = -rK \le 0,$$

$$-rh_{L^*}(s) + rsh'_{L^*}(s) + \frac{1}{2}\sigma^2 s^2 h''_{L^*}(s) = g(L^*) s^{\frac{-2r}{\sigma^2}} \left(-r - \frac{2r^2}{\sigma^2} - r\left(\frac{-2r}{\sigma^2} - 1\right) \right) = 0.$$
 (20)

This implies that

$$-rv_{L^*}(s) + rsv'_{L^*}(s) + \frac{1}{2}\sigma^2 s^2 v''_{L^*}(s) \le 0, \quad s \in (0, \infty) \setminus \{L^*\}.$$
 (21)

Next, by Itô's formula using the hint,

$$\begin{split} d\widetilde{V}_{t} &= -r \exp(-rt) v_{L^{*}}(\widetilde{S}_{t}^{1}) dt + \exp(-rt) v_{L^{*}}'(\widetilde{S}_{t}^{1}) d\widetilde{S}_{t}^{1} \\ &+ \frac{1}{2} \exp(-rt) v_{L^{*}}''(\widetilde{S}_{t}^{1}) \mathbb{1}_{\{\widetilde{S}_{t}^{1} \neq L^{*}\}} d\langle \widetilde{S}^{1} \rangle_{t} \\ &= \exp(-rt) \Big[\sigma v_{L^{*}}(\widetilde{S}_{t}^{1}) \widetilde{S}_{t}^{1} dW_{t} \\ &+ \Big(-rv_{L^{*}}(\widetilde{S}_{t}^{1}) + rv_{L^{*}}'(\widetilde{S}_{t}^{1}) \widetilde{S}_{t}^{1} + \frac{1}{2} \sigma^{2}(\widetilde{S}_{t}^{1})^{2} v_{L^{*}}''(\widetilde{S}_{t}^{1}) \mathbb{1}_{\{\widetilde{S}_{t}^{1} \neq L^{*}\}} \Big) dt \Big]. \end{split}$$
 (22)

It follows from (21) that \widetilde{V} is a local \mathbb{P} -supermartingale. Since it is nonnegative, Fatou's lemma implies that it is even a true \mathbb{P} -supermartingale.

Finally, by part (b), $\exp(-rt)v_{L^*}(s) \ge \exp(-rt)(K-s)^+$ for all $s \in (0, \infty)$ and $t \ge 0$. This together with the stopping theorem for supermartingales gives,

$$v_{L^*}(s) \ge \sup_{\tau \in \mathcal{S}_{0,\infty}} \mathbb{E}[\exp(-r\tau)v_{L^*}(\widetilde{S}_{\tau}^1)] \ge \sup_{\tau \in \mathcal{S}_{0,\infty}} \mathbb{E}\left[\frac{(K - \widetilde{S}_{\tau}^1)^+}{\widetilde{S}_{\tau}^0}\right] = v(s). \tag{23}$$

Since trivially $v_{L^*}(s) \leq v(s)$ for all $s \in (0, \infty)$, this establishes the claim.

Solution 4-4

(a) " \Rightarrow ": Seeking a contradiction, suppose that S fails NA. Then there exists $\vartheta \in \mathbb{R}^d \setminus \{0\}$ such that $\vartheta^{tr}\Delta S_1 \geq 0$ \mathbb{P} -a.s. and $\mathbb{P}[\vartheta^{tr}\Delta S_1 > 0] > 0$. In particular, $\vartheta \in \mathcal{A}(0)$. But then also for each $\lambda > 0$, $\lambda \vartheta \in \mathcal{A}(0)$, and so $\mathcal{A}(0)$ is not bounded and hence not compact. Since $\mathcal{A}(0) \subset \mathcal{A}(x)$, we arrive at a contradiction.

"\(\infty\)" Seeking a contradiction, suppose that $\mathcal{A}(x)$ is not compact. Since $\mathcal{A}(x)$ is clearly closed, this means that $\mathcal{A}(x)$ is not bounded. Hence, there exists a sequence $(\vartheta_n)_{n\in\mathbb{N}}$ in $\mathcal{A}(x)\setminus\{0\}$ such that $\lim_{n\to\infty}\|\vartheta_n\|_{\infty}=+\infty$. For $n\in\mathbb{N}$, define $\eta_n:=\frac{\vartheta_n}{\|\vartheta_n\|_{\infty}}$. Then $\|\eta_n\|_{\infty}=1$ by construction for each $n\in\mathbb{N}$. Since the unit ball (with respect to the maximum norm) in \mathbb{R}^d is compact, there exists a subsequence, denoted also by $(\eta_n)_{n\in\mathbb{N}}$, converging to some $\eta\in\mathbb{R}^d$ with $\|\eta\|_{\infty}=1$. Using that $\vartheta_n\in\mathcal{A}(x)$ for all $n\in\mathbb{N}$ and $\lim_{n\to\infty}\|\vartheta_n\|_{\infty}=+\infty$ gives

$$\eta^{tr} \Delta S_1 = \lim_{n \to \infty} \eta_n^{tr} \Delta S_1 = \lim_{n \to \infty} \frac{\vartheta_n^{tr} \Delta S_1}{\|\vartheta_n\|_{\infty}} \ge \liminf_{n \to \infty} \frac{-x}{\|\vartheta_n\|_{\infty}} = 0 \quad \mathbb{P}\text{-a.s.}$$
 (24)

Since $\eta \neq 0$, it follows from the non-redundancy of S that $\mathbb{P}[\eta^{tr}\Delta S_1 > 0] > 0$. Thus, η is an arbitrage opportunity, and we arrive at a contradiction.

(b) " \Rightarrow ": Seeking a contradiction, suppose that S fails NA. Then there exists $\vartheta \in \mathbb{R}^d \setminus \{0\}$ such that $\vartheta^{tr}\Delta S_1 \geq 0$ \mathbb{P} -a.s. and $\mathbb{P}[\vartheta^{tr}\Delta S_1 > 0] > 0$. Then by monotone convergence and by the fact that $U(\infty) = +\infty$,

$$\lim_{\lambda \to \infty} \mathbb{E}[U(x + \lambda \vartheta^{tr} \Delta S_1)] = U(x) \mathbb{P}[\vartheta^{tr} \Delta S_1 = 0] + U(\infty) \mathbb{P}[\vartheta^{tr} \Delta S_1 > 0] = +\infty, \quad (25)$$

Since $\lambda \vartheta \in \mathcal{A}(x)$ for all $\lambda > 0$ as in part (a), this implies that $u(x) = +\infty$, and we arrive at a contradiction.

"\(\infty\)": Since $\mathcal{A}(x)$ is compact by part (a), there exists c > 0 such that $\|\theta\|_{\infty} \leq c$ for all $\theta \in \mathcal{A}(x)$. This together with concavity of U shows that for all $\theta \in \mathcal{A}(x)$,

$$U(x + \vartheta^{tr} \Delta S_1) \le U(x) + U'(x)(\vartheta^{tr} \Delta S_1) \le U(x) + cU'(x) \sum_{i=1}^{d} |\Delta S_1^i| =: Y.$$
 (26)

Note that Y is integrable since $\mathbb{E}[|\Delta S_1^i|] < \infty$ for $i \in \{1, ..., d\}$ by hypothesis and by the fact that \mathscr{F}_0 is trivial. Thus

$$u(x) = \sup_{\vartheta \in \mathcal{A}(x)} \mathbb{E}[U(x + \vartheta^{tr} \Delta S_1)] \le \mathbb{E}[Y] < \infty.$$
 (27)

(c) Note that $u(x) < \infty$ by part (b).

First, we establish existence of ϑ^* . Let $(\vartheta_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{A}(x)$ such that

$$\lim_{n \to \infty} \mathbb{E}[U(x + \vartheta_n^{tr} \Delta S_1)] = u(x). \tag{28}$$

Since $\mathcal{A}(x)$ is compact by part (a), there exists a subsequence, denoted again by $(\vartheta_n)_{n\in\mathbb{N}}$, converging to some $\vartheta^* \in \mathcal{A}(x)$. Now by Fatou's lemma using (26), and the fact that $\vartheta^* \in \mathcal{A}(x)$,

$$u(x) = \lim_{n \to \infty} \mathbb{E}[U(x + \vartheta_n^{tr} \Delta S_1)] \le \mathbb{E}\left[\limsup_{n \to \infty} U(x + \vartheta_n^{tr} \Delta S_1)\right]$$
$$= \mathbb{E}\left[U(x + (\vartheta^*)^{tr} \Delta S_1)\right] \le u(x). \tag{29}$$

Next, we establish uniqueness of ϑ^* . To this end, let $\widetilde{\vartheta}^* \in \mathcal{A}(x)$ be another maximiser of $\mathbb{E}[U(x+\vartheta^{tr}\Delta S_1)]$. Set $\widehat{\vartheta}^*:=\frac{1}{2}\vartheta^*+\frac{1}{2}\widetilde{\vartheta}^*$. Then $\widehat{\vartheta}^*\in\mathcal{A}(x)$ by convexity of $\mathcal{A}(x)$. By concavity of U on $[0,\infty)$,

$$U(x + (\widehat{\vartheta}^*)^{tr} \Delta S_1) \ge \frac{1}{2} U(x + (\vartheta^*)^{tr} \Delta S_1) + \frac{1}{2} U(x + (\widehat{\vartheta}^*)^{tr} \Delta S_1). \tag{30}$$

Moreover, by strict concavity of U on $(0, \infty)$, by strict concavity of U on $[0, \infty)$ in case that $U(0) > -\infty$ and by the fact that $x + (\vartheta^*)^{tr} \Delta S_1, x + (\widetilde{\vartheta}^*)^{tr} \Delta S_1 > 0$ P-a.s. in case that $U(0) = -\infty$, the inequality in (30) is strict on $\{(\vartheta^*)^{tr} \Delta S_1 \neq (\widetilde{\vartheta}^*)^{tr} \Delta S_1\}$. On the other hand, by maximality of ϑ^* and $\widetilde{\vartheta}^*$, it follows that

$$\mathbb{E}[U(x+(\widehat{\vartheta}^*)^{tr}\Delta S_1)] \leq \frac{1}{2}\mathbb{E}[U(x+(\vartheta^*)^{tr}\Delta S_1)] + \frac{1}{2}\mathbb{E}[U(x+(\widehat{\vartheta}^*)^{tr}\Delta S_1)].$$

Thus, we may conclude that $(\vartheta^*)^{tr}\Delta S_1 = (\widetilde{\vartheta}^*)^{tr}\Delta S_1$ P-a.s. Now non-redundancy of S gives $\widetilde{\vartheta}^* = \vartheta^*$.

Solution 4-5

(a) Fix $0 \le a < b < c$. Then there exists $\lambda \in (0,1)$ such that $b = \lambda c + (1-\lambda)a$. By concavity of U,

$$\frac{U(b) - U(a)}{b - a} = \frac{U(\lambda c + (1 - \lambda)a) - U(a)}{\lambda(c - a)} \ge \frac{\lambda(U(c) - U(a))}{\lambda(c - a)} = \frac{U(c) - U(a)}{c - a}$$

$$= \frac{(1 - \lambda)(U(c) - U(a))}{(1 - \lambda)(c - a)} \ge \frac{U(c) - U(\lambda c + (1 - \lambda)a)}{(1 - \lambda)(c - a)} = \frac{U(c) - U(b)}{c - b}. \quad (31)$$

For z < y' < y'', setting a := z, b := y' and c := y'' shows that $y \mapsto \frac{U(y) - U(z)}{y - z}$ is decreasing on (z, ∞) , for y' < y'' < z, setting a := y', b := y'' and c := z shows that $y \mapsto \frac{U(y) - U(z)}{y - z}$ is also decreasing on (0, z), and for y' < z < y'', setting a := y', b := z and c := y'', establishes that $y \mapsto \frac{U(y) - U(z)}{y - z}$ is decreasing everywhere on $(0, \infty) \setminus \{z\}$.

(b) Let $\eta \in \mathbb{R}^d \setminus \{0\}$ be arbitrary. Since ϑ^* is an interior point of $\mathcal{A}(x)$, $\vartheta^* + \epsilon \eta \in \mathcal{A}(x)$ for all $\epsilon > 0$ sufficiently small. For $\epsilon > 0$ sufficiently small, set

$$\Delta_{\epsilon}^{\eta} := \frac{U(x + (\vartheta^* + \epsilon \eta)^{tr} \Delta S_1) - U(x + (\vartheta^*)^{tr} \Delta S_1)}{\epsilon}.$$
 (32)

Then on $\{\eta^{tr}\Delta S_1 \neq 0\}$,

$$\Delta_{\epsilon}^{\eta} = (\eta^{tr} \Delta S_1) \frac{U(x + (\vartheta^* + \epsilon \eta)^{tr} \Delta S_1) - U(x + (\vartheta^*)^{tr} \Delta S_1)}{\epsilon \eta^{tr} \Delta S_1}, \tag{33}$$

and by part (a), this increases monotonically to $(\eta^{tr}\Delta S_1)U'(x+(\vartheta^*)^{tr}\Delta S_1) > -\infty$ as $\epsilon \downarrow 0$. In particular, for $\eta := \vartheta^*$, using that $U' < +\infty$ on $(0, \infty)$ and $(\vartheta^*)^{tr}\Delta S_1 = -x < 0$ on $\{x + (\vartheta^*)^{tr}\Delta S_1 = 0\}$, this gives $U'(x + (\vartheta^*)^{tr}\Delta S_1) < \infty$ \mathbb{P} -a.s.

On the other hand, on $\{\eta^{tr}\Delta S_1=0\}$, $\Delta^{\eta}_{\epsilon}\equiv 0$, and this trivially increases monotonically to $(\eta^{tr}\Delta S_1)U'(x+(\vartheta^*)^{tr}\Delta S_1)$ as $\epsilon\downarrow 0$.

Now by the fact that U is increasing, by the fact that $U(0) > -\infty$ and by optimality of ϑ^* , for $\epsilon > 0$ sufficiently small,

$$\frac{U(0) - U(x + (\vartheta^*)^{tr} \Delta S_1)}{\epsilon} \le \Delta_{\epsilon}^{\eta}. \tag{34}$$

Thus, $\Delta_{\epsilon}^{\eta} \in L^{1}(\mathbb{P})$ for ϵ sufficiently small, and so by the above and monotone convergence, $(\eta^{tr}\Delta S_{1})U'(x+(\vartheta^{*})^{tr}\Delta S_{1})\in L^{1}(\mathbb{P})$ and

$$\mathbb{E}[(\eta^{tr}\Delta S_1)U'(x+(\vartheta^*)^{tr}\Delta S_1)] \le 0. \tag{35}$$

The final claim follows by setting $\eta := (1, 0, \dots, 0), \ \eta = (-1, 0, \dots, 0), \ \eta := (0, 1, 0, \dots, 0), \ \eta := (0, -1, 0, \dots, 0), \dots, \ \eta := (0, \dots, 0, 1)$ and $\eta := (0, \dots, 0, -1).$

(c) Using that $U'(x+(\vartheta^*)^{tr}\Delta S_1)\in (0,\infty)$ \mathbb{P} -a.s. by strict concavity of U on $(0,\infty)$ and part (b) and that $\mathbb{E}[U'(x+(\vartheta^*)^{tr}\Delta S_1)\Delta S_1^i]=0$ for all $i\in\{1,\ldots,d\}$, it suffices to show that $U'(x+(\vartheta^*)^{tr}\Delta S_1)\in L^1(\mathbb{P})$. Since U' is decreasing on $(0,\infty)$, it even suffices to show that

$$U'(x + (\vartheta^*)^{tr} \Delta S_1) \mathbb{1}_{\{x + (\vartheta^*)^{tr} \Delta S_1 \le x/2\}} \in L^1(\mathbb{P}).$$
(36)

Since $((\vartheta^*)^{tr}\Delta S_1)U'(x+(\vartheta^*)^{tr}\Delta S_1)\in L^1(\mathbb{P})$ by part (b),

$$\mathbb{E}[U'(x+(\vartheta^*)^{tr}\Delta S_1)\mathbb{1}_{\{x+(\vartheta^*)^{tr}\Delta S_1 \leq x/2\}}]$$

$$= \mathbb{E}[U'(x+(\vartheta^*)^{tr}\Delta S_1)\mathbb{1}_{\{(\vartheta^*)^{tr}\Delta S_1 \leq -x/2\}}]$$

$$\leq \frac{\mathbb{E}[-((\vartheta^*)^{tr}\Delta S_1)U'(x+(\vartheta^*)^{tr}\Delta S_1)\mathbb{1}_{\{(\vartheta^*)^{tr}\Delta S_1 \leq -x/2\}}]}{x/2}$$

$$\leq \frac{2}{x}\mathbb{E}[|(\vartheta^*)^{tr}\Delta S_1|U'(x+(\vartheta^*)^{tr}\Delta S_1)] < \infty. \tag{37}$$