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Solutions - Problem Sheet 5

1. Look at the separate file concerning multiple choice problems.

2. a) We have

AB =

(
0 7
0 7

)
and AC =

(
3 1
6 2

)
Adding them up we have AB + AC =

(
3 8
6 9

)
.

On the other hand, we have B + C =

(
3 3
0 1

)
. Multiplying by A from the right, we get

A(B + C) =

(
3 8
6 9

)
. Therefore, the matrices are equal to each other, that is, we have

AB + AC = A(B + C).

b) We have BC =

(
0 0
0 0

)
. That means that A(BC) =

(
0 0
0 0

)
as well. Conversely, we have

AB =

(
0 7
0 7

)
. Multiplying by C from the left (AB)C =

(
0 0
0 0

)
. In conclusion, we have

A(BC) = (AB)C in this example.

3. (i) a) We have

(A + B)(A−B) =

(
1 2
1 2

)(
1 0
−1 2

)
=

(
−1 4
−1 4

)
and

A2 −B2 =

(
1 3
0 4

)
−
(

1 0
0 1

)
=

(
0 3
0 3

)
.

b) Recall that for the case of two scalars a, b ∈ R we have (a + b)(a− b) = a2 − b2 . Why
is this not the case when it comes to matrices? Let us apply the distributive property;
A(B + C) = AB + AC and (B + C)A = BA + CA to (A + B)(A−B). We have

(A + B)(A−B) = (A + B)A− (A + B)B = A2 + BA−AB−B2.

Hence, the previous equation is equal to A2 −B2 only when AB = BA, that is, only
if matrices A and B commute.

c) As we have mentioned, we will have an equality if C and D commute. Here are a couple
of examples of such matrices

– C = D

– C =

(
1 0
0 1

)
, D arbitrary
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– C =

(
0 0
0 0

)
, D arbitrary

– C =

(
c1 0
0 c2

)
, D =

(
d1 0
0 d2

)
(ii) We have

A + B =

(
2 2
3 0

)
.

Therefore

(A + B)(A + B) =

(
10 4
6 6

)
.

On the other hand we have

A2 + 2AB + B2 =

(
16 2
3 0

)
.

Hence, (A+B)(A+B) is indeed not equal to A2 + 2AB+B2. In order to get the correct
rule, we again use the distributive properties

(A + B)(A + B) = (A + B)A + (A + B)B = A2 + BA + AB + B2.

4. We have A ∈ R3×3, B ∈ R3×2 and x,y ∈ R3×1. By straightforward computation it follows

• AB =

23 26
31 36
−6 −8

.

• BA is not defined.

• Ax =

−21
−5
−7

.

• A2 =

−4 −19 1
−3 −2 9
−2 −3 −10

.

• B2 is not defined.

• yx is not defined.

• y>x = 12.

• xy> =

 0 0 0
2 6 −4
−3 −9 6

.

• B>y =

(
4
6

)
.

• y>B = (4, 6).

5. a) We have

A1 = A− In =

0 2 4
0 0 3
0 0 0

 .
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Now we can compute

A2
1 = A1 ·A1 =

0 0 6
0 0 0
0 0 0

 , and A3
1 = A1 ·A2

1 =

0 0 0
0 0 0
0 0 0


Therefore, we also have A4

1 = A1A
3
1 = A10 = 0, since A3

1 is the zero matrix. By induction
it follows that Ak

1 = 0 for all k ≥ 3.

b) Since Ak
1 = 0 for k ≥ 3 the formula (1), with k = 10 and n = 3, reduces to

A10 = (I3 + A1)10 = I3 +

(
10

1

)
A1 +

(
10

2

)
A2

1.

In other words, we have

A10 =

1 0 0
0 1 0
0 0 1

+ 10

0 2 4
0 0 3
0 0 0

+ 45

0 0 6
0 0 0
0 0 0

 =

1 20 310
0 1 30
0 0 1

 .

6. (i)1 %% Problem 6.(i).a)

% INPUT

3 % n - parameter describing the size of the matrix

% OUTPUT

5 % Z - nxn matrix , whose non-zero entries are shaped like the letter Z

7 function Z = ZShaped(n)

9 Z = sparse(ones(n-1, 1), (1:(n-1))’, ones(n-1,1), n, n) + sparse((1:n)’,...

(n:-1:1)’, (1:n)’, n, n)+sparse( n*ones(n-1, 1), (2:n)’, ...

11 n*ones(n-1,1)’, n, n);

1 %% Problem 6.(i).b)

% INPUT

3 % n - parameter describing the size of the matrix

% OUTPUT

5 % X - nxn matrix , whose non-zero entries are shaped like the letter X

7 function X = XShaped(n)

9 X = 2*sparse((1:n)’,(1:n)’,ones(n,1), n, n) + 2*sparse((1:n)’, ...

(n:-1:1)’,ones(n,1));

11
% If n is an odd number then by the previous equation the value of the

13 % entry in the middle of the diagonal would be doubled , so we have to reset

% it.

15
if mod(n,2)

17 X( (n+1)/2, (n+1)/2) = 2;

end
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%% Problem 6.(i).c)

2 % INPUT

% n - parameter describing the size of the matrix

4 % OUTPUT

% T - nxn, three band matrix

6
function T = ThreeBand(n)

8
T = sparse( (1:n)’, (1:n)’, ones(n,1))+sparse((2:n)’,(1:n-1)’,...

10 2*ones(n-1,1), n, n)+sparse((3:n)’,(1:n-2)’,3*ones(n-2,1), n, n);

(ii) a) Let A be a matrix whose non-zero entries form a pattern shaped like the letter Z, and
denote B = A ·A. For an arbitrary element of B by the definition of matrix-matrix
multiplication we have

bij =

n∑
k=1

aikakj

Due to the definition of A we have that aik 6= 0 only if either i = 1, i = n or k = n+1−i.
Cases when i = 1 and i = n refer to the first and the last row of B. In the last case,
k = n + 1− i, we have

bij = ai,n+1−ian+1−i,j

Now, an+1−i,j is non-zero only if j = n + 1− (n + 1− i) = i. Therefore, bij is non-zero
only

– i = 1,

– i = n,

– j = i.

In other words, B is sparse, and it has non-zero entries forming a pattern shaped like
the reflected letter Z, that is, shaped like Z

b) Let A be a matrix whose non-zero entries form a pattern shaped like the letter X, and
denote B = AA. For an arbitrary element of B by the definition of matrix-matrix
multiplication we have

bij =

n∑
k=1

aikakj

Due to the definition of A we have that aik 6= 0 only if k = i or k = n+1− i. Therefore

bij = aiiaij + ai,n+1−ian+1−i,j .

Furthermore, we have that aij and an+1−i,j are non-zero only if j = 1 or j = n+ i− 1.
Therefore, bij is non-zero only

– j = i,

– j = n + 1− i.

In other words, B is sparse and it has non-zero entries forming a pattern shaped like
the letter X.

c) Let A be a three-band matrix as described in the wording of the problem, and denote
B = AA. For an arbitrary element of B by the definition of matrix-matrix multiplica-
tion we have

bij =

n∑
k=1

aikakj
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By the definition of A we have that, for i ≥ 3, entry aik is non-zero only if k = i, i + 1
or k = i + 2. Hence, we have

bij = aiiaij + ai,i+1ai+1,j + ai,i+2ai+2,j .

Applying the same logic again to aij , ai+1,j and ai+2,j we have that bij is non-zero only
if j = i, i + 1, i + 2, i + 3 or j = i + 4. That is because aij 6= 0 only if j = i, i + 1 or
j = i + 2, ai+1,j 6= 0 only if j = i + 1, i + 2 or j = i + 3, and finally, ai+2,j 6= 0 only if
j = i + 2, i + 3 or j = i + 4. Therefore, B is a sparse, five-band matrix, with non-zero
entries on the main diagonal and the four sub-diagonals below the main diagonal.

(iii) %% Problem 6.(iii).a)

2 % INPUT

% x - a vector

4 % OUTPUT

% y - result of multiplying x by a Z-shaped sparse matrix.

6
function y = MultiplyZShaped( x )

8 n = length(x);

y = zeros(size(x)); % Initialising the vector

10
% First and last entry of y abide to a different rule than other entries

12 y(1) = dot(ones(size(x)), x);

y(n) = n*dot(ones(size(x)), x);

14
% The remaining entries

16 y(2:n-1)=(2:(n-1)).’.* x(n-1:-1:2);

end

1 %% Problem 6.(iii).b)

% INPUT

3 % x - a vector

% OUTPUT

5 % y - result of multiplying x by a X-shaped sparse matrix.

7 function y = MultiplyXShaped( x )

9 y = zeros(size(x)); % Initialising vector y

11 for i = 1 : length(x)

y(i) = 2*(x(i)+x(length(x)-i+1));

13 end

15 % Same as when constructing X, we deal with the case when x has an odd

% number of entries separately.

17 if mod(length(x), 2)

y( (length(x)+1)/2) = y( (length(x)+1)/2) /2;

19 end

1 %% Problem 6.(iii).c)

% INPUT

3 % x - a vector

% OUTPUT
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5 % y - result of multiplying x by a three band sparse matrix.

7 function y = MultiplyThreeBand( x)

9 y = zeros(size(x)); % Initialising y

11 % First and second entry of y adhere to a different rule than other entries

y(1) = x(1);

13 y(2) = 2*x(1)+x(2);

15 % Computing the remaining entries

for i = 3 : length(y)

17 y(i) = 3*x(i-2)+2*x(i-1)+x(i);

end


