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Prof. R. Hiptmair

Problem Sheet 8 - Solutions

1. We can write the overdetermined linear system as

1 mi
1 mao
T = .

1 My,
1 mq
ma

In order to solve it system we shall use normal equations. Denote A = | . | and b = .

1 My,

Then ATA = n, and ATb=mi + ...+ m,. Therefore
ATAz=ATb=nz=mi+...+m,.

Therefore, the least squares solution is the arithmetic mean of the measurements

mi+...+mg,
—

2. a) We have
yi = f(t:) = ae’.

This is the governing non-linear system of equations.
b) Let g(t) = log f(¢), which is well defined since f(¢) > 0 for all ¢. Therefore, we have
g(t) =log f(t) = loga + log e?* = a + B,

where we have defined a = loga. In an accordance with g we also, define b;: = logy;.
Consequently, this freshly linearised problem can now be written as an overdetermined
system of linear equations,

1 t by
1t " by
A=1. . ,x:(ﬂ> and b= | . |, sothat Ax=b.

1 t, by,

c) Let us compute the parameters of governing normal equations AT Ax = A"b. We have

TA — n D ti T [ i bi
A “(zzzm zm) and A'b= (zyiltim -

Now, once we find the least squares solution x = (g), we take @ = e® and 3 to be our

approximative parameters for f.

Bitte wenden!



d)| % Problem 2d
% INPUT
3|%Z t, y - parameters, such that f(t(i)) = y(z)
% OUTPUT
5 |% alpha, beta - walues such that alpha*ezp (beta*t) approzimates f, thru
/% least squares.
7
function [alpha, betal] = ExpoFuncFit(t, y)
9 /s Compute the solution of the linearised problem
x = linearregression(t, log(y));
11 /% Set the proper output values
alpha = exp(x(2));
13 beta = x(1);
end
15
function x = linearregression(t,y)
17 |7 Solution of linmear regression problem (fitting of a line to data) for
% data points \Blue{$(t_<,y_t)$}, \Blue{$i=1,\ldots,n$} passed in the
19 | %# \emph{column wvectors} \tezttt{t} and \tezxttt{yl.
/% The return value <s a 2-vector, contatining the slope of the fitted line
21 | %4 in z(1) and its offset in z(2)
n = length(t); if (length(y) "= n), error(’data,size mismatch’); end
23 |4 Coefficient matriz of \textbf{overdetermined linear system}
A = [t,ones(n,1)];
25 | % \Red{Determine least squares solution by using MATLAB’s $\backslash$
% operator}
27 |x = A\y;
end

a) Since function f is a linear combination of g; and gs, it can be written as
f(x) = agi(x) + Bg2(z) = a2” + f277,
where we have to approximate «a, 8 € R. We have
1
¢ +48+8=m

1
§a+2ﬁ+4:r2
a+b+2=r3

1
2 —b—4=
a+2 T4
1
4a+1b—12=T5.

as the equations for the values of the error vector r = ||b — Ax"||, where

Ly -8

i 2 —4

2 «
A=|1 1|,b=]|-2] and x:().

2 1 4 p

D b

Siehe nichstes Blatt!



b) We have
3l 5 50
TA — (16 ThH —
AA<5 )A b(_37>.

c) Solving normal equations AT Ax = ATb yields

oo 3680 and b — 3056
1263 - 1263
a) There are (}) values of d;;.
b) Let us define
-1 1 0 ---
-1 0 1 0
o -1 1 0 ---
A=1-1 0 0 1 0
0 -1 0 1 O
and
da1
dsz1
ds2
d=1dy
da2
P
2 n
Then our overdetermined system is Ax = d, where x = | . |. In conclusion, A € IR(Z)’",
Pn

d e R() and x € R™.

c) Let us compute the ker(A). We want to find all x such that Ax = 0. We have

-1 0 1 0 1 0

0 -1 1 0 - Po 0

-1 0 0 1 0 S| =
-1 1 :

0 0 0 o, 0

This is equivalent to having p; —p; = 0 for all n > 4 > j > 1. In other words, we have
p; = p; for all ¢,j. Therefore, Ax = 0 if and only if p; = «, for all 4 = 1,...,n and
1

1
an arbitrary a € IR. Thus ker(A) = Span i . This implies that dim(ker(4)) = 1,

1
therefore, rank(A) < n, which means that the equation Ax = d will not have a unique
solution, since it violates the condition 3.9.2.E.

Bitte wenden!



Let us consider a different system, Instead of considering p; let us shift the whole system
by p1, in other words, define p; = p; — p1. Notice that we now still have

Di —Dj =Pi —P1 — Pj +P1 = dij.

We also have p; = 0. Therefore, solving

-1 1 0 --- day
-1 0 1 0 0 d31
o -1 1 0 .- D2 dsa
A=-1 0 0 1 0 - | = da
o -1.0 1 0 --- _ dyo
: ] \Pn .
is equivalent to solving Ax = d, where
1 0 ---
0 1 0O
- -11 0 -
A=10 0 1 o0
-1 0 1 0
D2
B D3
is created by removing the first column of A and x = | . |. This modified matrix (Z) X
) \Pn
(n — 1) matrix A has an empty kernel, since solving Ax = 0 gives po = 0,p3 = 0,... and

so on. Therefore, A is a matrix of full rank (as dim(ker(A)) = 0), and it admits a unique
least squares solution.

d) For n =5, the matrix of the modified system is given by

1 0 0 0
0 1 0 0
-1 1 0 0
0 0 1 0
~ -1 0 1 0
A= 0 -1 1 0
0 0 0 1
-1 0 0 1
0o -1 0 1
0 0 -1 1

Siehe nichstes Blatt!



so that the overdetermined system is given by

>
o
I

Let us write down the normal equations. We compute

4 -1 -1 -1
-1 4 -1 -1

—
A A= -1 -1 4 -1
-1 -1 -1 4
and
dQl - d32 - d42 - d52
ATd — d31 + dzg — da3 — ds3

dy1 + dyo + dys — dsa
ds1 + ds2 + ds3 + dsq

Hence, the normal equations are ATAx=A"Td.

e) /% Problem 4e

2 |Z INPUT

# D - a strictly lower triangular matriz
4 | Z OUTPUT

function p = RoadLengths (D)
% Find the indices of non-zero entries

10 | [I,J] = £ind(D’ > 0);
/% Determine the stize of A

% p - vector containing the shited wvalues, \tilde{p}t_2,

..., \tilde{p}_n

Remove A’s first column to ensure uniqueness of our least squares solution

12 |m = size(D, 1);
n = length(I);
14 | % Build A, in a sparse form
A = sparse([(1:n)’;(1:n)’],[I;J],[-ones(n,1);o0nes(n,1)],n,m);
16 | 7%
A = A(:,2:end);
18 | 7 Eztract the right hand side vector
d = nonzeros(D’);
20 | 4 Finally, solve the equattion

= A\d;

e}

a) Let us show that

(1)

Bitte wenden!



b)

b)

implies AT Ax = A "b. Multiplying (1) through we have
A'r=0
r+Ax=b.
Multiplying r + Ax = b by AT from the left we have
A'r+ ATAx=A"b.
Plugging in ATr = 0 into the preceding equation gives AT Ax = ATb.

Conversely, let us assume that ATAx = ATb holds. Define r = Ax — b. Recall that we
can do that since A,x and b are known to us. Therefore, the what remains to be proven
is that such an r satisfies ATr = 0, but we have

A'r=ATAx—A"b=0,
since x is the solution of our normal equations. Hence, the converse also holds.
From a) we have r = Ax — b.

In problems 4.d) and 4.e) the overdetermined matrix of the system, A, was sparse, but
the matrix AT A which concerns normal equations, was a dense matrix. Therefore, a major

AT 0). . . . A
benefit of ( I A that it is sparse, provided that the original matrix A is also sparse.
Take

T i)
T9 1+ T3 Y1
T3 T2 + x4 o Y2
A_ — . , X = and b = .
B
Tm—1 Tm—2+ Ty, Ym
Tm Tm—1
Therefore, our overdetermined system is Ax = b.
Denote
Z1 T2
T2 T+ 23
C:ATA: T X9 T T3 $2+$4
T2 T1+T3 ... Tym-1 . .
Tm Tm—1
m
Then we have c1; = > -, 27. Also,
m—1 m—1 m—1
Ci2 = C21 = Z1T2 + Z Ti(Tim1 + Tig1) + T 1Ty, = T122 + Z TiTi—1 + Z TiTitl + TmTm—1
i=2 i=2 i=2

m m—1 m—1
= E Tiwi_1 + E TiTiy1 = 2 E TiTiy1.
i=2 i=1 i=1

For the least entry of AT A we have

m—1 m—2 m—1
2 § 2 2 § 2 E 2 2
Co2 = To + (1‘7;_1 + Ii+1) + Ty = 2 Z; +2 Ti—1Ti41 + Ty + Loy
=2 =2 =2
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Let us now compute A Tb. We have

ATb = ( Liz1 2 )
i@y1+$m—MMr+§XizyK%;1+xH4)

t)| % Problem 6c)
%4 INPUT
3 |% z, y - signals, of equal length
% OUTPUT
5 | % beta, alpha - parameters which give an appropriate least squares solution

7 | function [beta, alphal = CrosstalkChannel(x, y)

9 | % Here we are addapting the linearregression.m code

n = length(y); if (length(x) ~= n), error(’data,size mismatch’); end
11
%#B Build the matriz of the overdetermined system
13 |A = [x, [x(2); x(1:n-2)+x(3:n);x(n-1)] 1;

% Compute the solution

15 | solution = A\y;

% Assign appropriate wvalues

17 |alpha = solution(1);

beta = solution(2);

end




