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Solutions - Problem Sheet 10

1. We want to find all solutions to the equation

α1b
1 + α2b

2 + · · ·+ αnb
n = 0 (1)

where αi ∈ R for i = 1, . . . , n. Let us apply P to (1). We have

P

(
n∑
i=1

αib
i

)
=

n∑
i=1

αiPb
i = 0. (2)

Since bi ∈ ker(P) for i = r + 1, . . . , n we have

Pbi = 0, for i = r + 1, . . . , n.

Furthermore, since bi ∈ im(P) for i = 1, . . . , r we have

Pbi = bi, for i = 1, . . . , r.

Combining those two facts we have that (2) is equivalent to

α1b
1 + · · ·+ αrb

r = 0

Since {b1, . . . ,br} is a basis of im(P) it is also a linearly independent set. Therefore α1 = α2 =
. . . = αr = 0. This reduces (1) to

αr+1b
r+1 + αr+2b

r+2 + · · ·+ αnb
n = 0.

Again, since {br+1, . . . ,bn} is a basis for ker(P) it is also a linearly independent set. Thus
αr+1 = . . . = αn = 0. In conclusion, we have αi = 0 for all i = 1, . . . , n which means that
{b1, . . . ,bn} is a linearly independent set.

Therefore, it is a set of n linearly independent vectors in a vector space of dimension n, so it is
a basis for V .

2. a) Let x,y ∈ U and define z = x + y. We have〈1
2
3

 , z

〉
=

〈1
2
3

 ,x + y

〉
=

〈1
2
3

 ,x

〉
+

〈1
2
3

 ,y

〉
= 0.

Therefore, x + y ∈ U.
Take α ∈ R and x ∈ U and define z = αx. We have〈1

2
3

 , z

〉
=

〈1
2
3

 , αx

〉
= α

〈1
2
3

 ,x

〉
= 0.

Therefore, αx ∈ U and we have that U is indeed a subspace of V .
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b) Take an arbitrary x ∈ U . Then

0 =

〈1
2
3

 ,x

〉
= x1 + 2x2 + 3x3 ⇒ x1 = −2x2 − 3x3.

This means that

U =
{
x ∈ R3 : x1 = −2x2 − 3x3

}
=

x ∈ R3 : x =

−2s− 3t
s
t

 , s, t ∈ R


=

x ∈ R3 : x = s

−2
1
0

+ t

−3
0
1

 , s, t ∈ R

 ,

that is,

U = span


−2

1
0

 ,

−3
0
1

 .

Since the set of vectors


−2

1
0

 ,

−3
0
1

 is clearly linearly independent it is also a basis

for U .

c) We will use Theorem 4.5.E. The set


−2

1
0

 ,

−3
0
1

 is a basis for U while


1

1
1

 is

a basis for W . Therefore,

BV =


−2

1
0

 ,

−3
0
1

 ,

1
1
1


is a basis for R3 by Problem 1c). Theorem 4.5.E now tells us that with respect to BV , the
matrix representation of our projection is

A =

1 0 0
0 1 0
0 0 0

 .

d) We will determine the matrix representation of the projection P in Cartesian cooridinates
by computing the change of basis. The first step is to write the elements of one basis as
the linear combination of the elements of the other basis. We have1

0
0

 = −1

6

−2
1
0

− 1

6

−3
0
1

+
1

6

1
1
1


0

1
0

 =
2

3

−2
1
0

− 1

3

−3
0
1

+
1

3

1
1
1


0

0
1

 = −1

2

−2
1
0

+
1

2

−3
0
1

+
1

2

1
1
1


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which gives

S =

− 1
6

2
3 − 1

2
− 1

6 − 1
3

1
2

− 1
6

1
3

1
2

 .

Since the other basis is the standard Cartesian basis, we have

R =

−2 −3 1
1 0 1
0 1 1

 .

Now we have

P = RAS =

 5
6 − 1

3 − 1
2

− 1
6

2
3 − 1

2
− 1

6 − 1
3

1
2

 .

3. a) The matrix B>B is symmetric, since

(B>B)> = B>(B>)> = B>B.

Therefore, the upper triangular part describes the whole matrix. Since an n × n matrix

has n(n+1)
2 entries in its upper triangular part, we have that there are 6 defining equations

for our a, b, c, d, e and f , because in our case n = 3.

b) Computing B>B = I we have

(i) 1
3 + 1

3 + e2 = 1,

(ii) 1√
3
a− 1√

3
c = 0,

(iii) 1√
3
b+ 1√

3
d− fe = 0,

(iv) a2 + c2 = 1,

(v) ab− cd = 0,

(vi) b2 + d2 + f2 = 1.

From (i) we have e = 1√
3
; from (ii) we have a = c. Plugging this into (iv) we have

a = c = 1√
2
. From (v) we have b = d and (iii) then gives us f = 2b. Finally, plugging both

of those expressions in (vi) yields b = d = 1√
6

and f = 2√
6
.

4. Let us denote the elements of the Cartesian basis as follows

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .

Reflection about the plane {x1 = x2} is invariant to the elements of that plane. Thus,
F1(e3) = e3. Also, we easily see F1(e1) = e2 and F1(e2) = e1 and the corresponding
matrix representation is

A1 =

0 1 0
1 0 0
0 0 1

 .

For the map F2 the Section 4.6 of the lectures gives us (with φ = π/4)

A2 =

1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2

 .
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An analogous equation holds for F3. Rotating around the x2 axis leaves the vectors which
are on that axis unchanged, hence F3(e2) = e2. On the other hand we have

F3(e1) =

cos(π/6)
0

sin(π/6)

 and F3(e3) =

− sin(π/6)
0

cos(π/6)

 .

Therefore

A3 =


√
3
2 0 − 1

2
0 1 0
1
2 0

√
3
2

 .

a)b) Matrix representation of a linear map that is given as a composition of two other linear
maps is just a product of matrix representations of those two maps. Therefore, the matrix
representation of F2 ◦ F1 is

A2A1 =

 0 1 0
1√
2

0 − 1√
2

1√
2

0 1√
2

 .

Similarly, for F3 ◦ F2 we have

A3A2 =


√
3
2

√
2
4

√
2
4

0
√
2
2 −

√
2
2

− 1
2

√
6
4

√
6
4

 .

5. As in Problem 3, we compute A>A and equate it to I. By doing so we obtain the following
equations

(i) 1
2 + r2 = 1,

(ii) s√
2

+ r√
2

= 0,

(iii) t√
2

= 0,

(iv) 1
2 + s2 = 1,

(v) ts = 0,

(vi) 1 + t2 = 1.

From (vi) and (iii) we have t = 0 while (ii) gives s = −r. Then (i) gives r = ± 1√
2

and s = ∓ 1√
2
.

Hence, we either have r = 1√
2
, s = − 1√

2
, t = 0, or r = − 1√

2
, s = 1√

2
, t = 0.

6. a) It is sufficient to show that the corresponding matrix representations are orthogonal ma-
trices. We have

A>A = (I2 − 2uu>)>(I2 − 2uu>) = (I2 − 2uu>)(I2 − 2uu>) = I2 − 4uu> + 4u(u>u)u>

= I2 − 4uu> + 4u‖u‖u> = I2.

Analogous equations hold for B. Hence, F and G are isometries.
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b) It is sufficient to find w 6= 0 such that Aw = w. We have

Aw = (I2 − 2uu>)w = w − 2u(u>w)

Therefore, if we take w to be a vector such that u>w = 0 then Aw = w follows. Such non-

zero vectors do exist, for example, for u =

(
x
y

)
if we take w =

(
−y
x

)
then u>w = 0 and

also w 6= 0 since ‖w‖= ‖u‖= 1. Furthermore, for α ∈ R we have A(αw) = αAw = αw.
Therefore, the space

U = Span

{(
−y
x

)}
,

where u =

(
x
y

)
, is a one-dimensional subspace of R2 whose elements are mapped to

themselves, with respect to F. By analogy the same follows for G.

c) We can notice that Au = −u. Furthermore, we know that for all vectors orthogonal to u,
that is, all vectors w such that w>u = 0, Aw = w holds. Hence, F and G are reflection
about a line (containing the origin) of direction w

d) Since ‖u‖= ‖v‖= 1 both u and v lie on the unit circle. Therefore, there exist ϕ, ϑ ∈ [0, 2π]
such that

u =

(
cosϕ
sinϕ

)
and v =

(
cosϑ
sinϑ

)
.

We compute

uu> =

(
cos2 ϕ cosϕ sinϕ

cosϕ sinϕ sin2 ϕ

)
.

Plugging this into the expression for A, and using trigonometric identities, we have

A = I− 2uu> =

(
− cos(2ϕ) − sin(2ϕ)
− sin(2ϕ) cos(2ϕ)

)
.

An analogous expression holds for B, that is

B = I− 2uu> =

(
− cos(2ϑ) − sin(2ϑ)
− sin(2ϑ) cos(2ϑ)

)
.

The matrix representation of the composition of those two maps is then just a product of
their corresponding matrix representations. Hence, we have

BA =

(
cos(2ϑ) cos(2ϕ) + sin(2ϑ) sin(2ϕ) cos(2ϑ) sin(2ϕ)− sin(2ϑ) cos(2ϕ)
cos(2ϕ) sin(2ϑ)− sin(2ϕ) cos(2ϑ) cos(2ϑ) cos(2ϕ) + sin(2ϑ) sin(2ϕ)

)
=

(
cos(2ϑ− 2ϕ) − sin(2ϑ− 2ϕ)
sin(2ϑ− 2ϕ) cos(2ϑ− 2ϕ)

)
which is a rotation matrix through an angle 2(ϑ− ϕ).

e) Since both F and G are reflections the resulting action is the reflection across two lines (in
R

2) which is exactly a rotation for double the angle between those two lines.

7. Denote the vectors of the Cartesian basis of R3 by

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .
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a) We have

‖u‖2= cos2 φ cos2 ϑ+sin2 φ cos2 ϑ+sin2 ϑ =
(
cos2 φ+ sin2 φ

)
cos2 ϑ+sin2 ϑ = cos2 ϑ+sin2 ϑ = 1.

b) We want to compute Sφ,ϑe
i for i = 1, 2, 3. Since e1 and e2 already lie in the plane x3 = 0,

we have that the first two components of their projections onto that plane are exactly their
first two entries. In other words

Sφ,ϑ(e1) =

(
1
0

)
and Sφ,ϑ(e2) =

(
0
1

)
.

In order to compute Sφ,ϑ(e3) let us write e3 as a linear combination of e1, e2 and u. This
can be done since the set {e1, e2,u} is a basis for R3. We have0

0
1

 = −cosφ cosϑ

sinϑ
e1 − sinφ cosϑ

sinϑ
e2 +

1

sinϑ
u.

Now, the projection of e3 onto the plane {x3 = 0} is the projection onto Span{e1, e2},
thus it simply means removing its component in the u direction. Therefore,

Sφ,ϑ(e3) =

(
− cosφ cosϑ

sinϑ

− sinφ cosϑ
sinϑ

)
and the matrix representation of Sφ,ϑ with respect to Cartesian bases of R3 and R2 is

A =

(
1 0 − cosφ cosϑ

sinϑ

0 1 − sinφ cosϑ
sinϑ

)
.

d) We have seen in the lectures that a linear mapping maps lines to lines. Hence, plot is
sufficient since it only plots lines between given points.

e) %

2 funct ion plottetshadow(A, phi, theta)

4 % Creating the matrix representation of our map

P = [1 0 -cos (phi)* cos (theta)/ s in (theta);...

6 0 1 - s in (phi)* cos (theta)/ s in (theta)];

8 points = zeros (2,4);
% Computing the projected points

10 f o r i = 1 : 4

points(:, i) = P*A(:,i);

12 end

14 % Plotting

f i gu r e (1)
16 hold on

f o r i = nchoosek(1:4, 2)’

18 plot ([points(1,i(1)) points(1,i(2))], ...

[points(2,i(1)) points(2,i(2))], ’k-’, ’LineWidth’, 2);

20 end

22 % Making the plot a bit nicer
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xlim([min(points(1,:))-1, max(points(1,:))+1]);
24 ylim([min(points(2,:))-1, max(points(2,:))+1]);

26 % Alternative way to plot this would be to consecutively plot each of the

% six edges of the projetion by writing its own plot function. Method used

28 % here achives that same effect with a for loop.

8. A tetrahedron will cast a triangular shadow if one if its edges is parallel to the u. That is
because if one if its edges is parallel to u then the projection will map the vertices which define
that edge onto a single point, rather than two distinct points.


