D-MATH Prof. R. Hiptmair

Problem Sheet 3

- **1.** Let $(V, +, \cdot)$ be a vector space with an inner product $\langle \cdot, \cdot \rangle$, and for $m \in \mathbb{N}$ let $\mathbf{a}^1, \ldots, \mathbf{a}^m$ be non-zero vectors in V, that is, such that $\mathbf{a}^j \neq \mathbf{0}$ for all $j = 1, \ldots, m$.
 - (a) Let us assume that for some $\mathbf{v} \in V$ we have $\langle \mathbf{v}, \mathbf{a}^j \rangle = 0$ for all j = 1, ..., m. Show that such a \mathbf{v} is orthogonal to $\mathsf{Span}\{\mathbf{a}^1, \ldots, \mathbf{a}^m\}$, that is, show that \mathbf{v} is orthogonal to all vectors which can be written as a linear combination of vectors $\mathbf{a}^1, \ldots, \mathbf{a}^m$.
 - (b) Let $V = \mathbb{R}^3$, with default vector addition, scalar multiplication and inner product. For m = 2 take $\mathbf{a}^1 = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$, $\mathbf{a}^2 = \begin{pmatrix} 4 \\ -2 \\ -1 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Compute a vector \mathbf{w} , where $\mathbf{w} = \frac{\langle \mathbf{v}, \mathbf{a}^1 \rangle}{\langle \mathbf{a}^1, \mathbf{a}^1 \rangle} \mathbf{a}^1 + \frac{\langle \mathbf{v}, \mathbf{a}^2 \rangle}{\langle \mathbf{a}^2, \mathbf{a}^2 \rangle} \mathbf{a}^2$,

verify that $\langle \mathbf{a}^1, \mathbf{a}^2 \rangle = 0$ and show that $\mathbf{v} - \mathbf{w}$ is orthogonal to $\mathsf{Span}\{\mathbf{a}^1, \mathbf{a}^2\}$.

(c) For an arbitrary vector $\mathbf{v} \in V$ we define a vector

$$\mathbf{w} \colon = \sum_{j=1}^{m} \frac{\langle \mathbf{v}, \mathbf{a}^{j} \rangle}{\langle \mathbf{a}^{j}, \mathbf{a}^{j} \rangle} \mathbf{a}^{j}.$$
(1)

Show that if all \mathbf{a}^{j} 's are pairwise orthogonal, that is, if we have

 $\langle \mathbf{a}^l, \mathbf{a}^j \rangle = 0$ for all $l, j \in \{1, \dots, m\}$ such that $l \neq j$,

then the vector $\mathbf{v} - \mathbf{w}$ is orthogonal to $\mathsf{Span}\{\mathbf{a}^1, \dots, \mathbf{a}^m\}$.

(d) Let $V = \mathbb{P}_2$, the set of polynomials of degree less than or equal to 2, with standard operations

$$(\mathbf{p} + \mathbf{q})(x) = \mathbf{p}(x) + \mathbf{q}(x)$$
 and $(\alpha \mathbf{p})(x) = \alpha \mathbf{p}(x)$ for all $\mathbf{p}, \mathbf{q} \in \mathbf{P}_2$.

Let us also define an inner product on \mathbb{P}_2 by

$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_0^1 \mathbf{p}(x) \mathbf{q}(x) dx \text{ for } \mathbf{p}, \mathbf{q} \in \mathbb{P}_2.$$

Show that, if we take $\mathbf{a}^1, \mathbf{a}^2, \mathbf{v} \in \mathbb{P}_2$ as

$$\begin{aligned} \mathbf{a}^{1}(x) &= 1, \\ \mathbf{a}^{2}(x) &= 1 - 2x, \qquad x \in \mathbb{R} \\ \mathbf{v}(x) &= x^{2}, \end{aligned}$$

then \mathbf{a}^1 and \mathbf{a}^2 are orthogonal vectors in \mathbb{P}_2 . Compute the polynomial \mathbf{w} using formula (1).

2. (a) Write a MATLAB function

function aReflect = Problem2a(a, p, q)

that takes as arguments a point $\mathbf{a} \in \mathbb{R}^2$ (a column vector) and column vectors $\mathbf{p}, \mathbf{q} \in \mathbb{R}^2$, $\mathbf{q} \neq \mathbf{0}$, which determine a line $\mathcal{G} = \{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} = \mathbf{p} + \tau \mathbf{q}, \tau \in \mathbb{R}\}$. The function is supposed to return the reflection of \mathbf{a} across \mathcal{G} . Additionally, plot \mathbf{a}, \mathcal{G} and the reflection of \mathbf{a} .

Hint: A template for the function Problem2a is available online and can be downloaded from course website.

(b) Write a MATLAB function

function
$$[s, t] = Problem2b(p1, q1, p2, q2)$$

which for two lines $\mathcal{G}_1 = \{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} = \mathbf{p}^1 + \tau \mathbf{q}^1, \tau \in \mathbb{R}\}$ and $\mathcal{G}_2 = \{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} = \mathbf{p}^2 + \tau \mathbf{q}^2, \tau \in \mathbb{R}\}$, given by column vectors $\mathbf{p}^1, \mathbf{q}^1 \in \mathbb{R}^2, \mathbf{q}^1 \neq \mathbf{0}$ and $\mathbf{p}^2, \mathbf{q}^2 \in \mathbb{R}^2, \mathbf{q}^2 \neq \mathbf{0}$, computes column vectors $\mathbf{s}, \mathbf{t} \in \mathbb{R}^2$ which define the angle bisector $\mathcal{W} = \{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} = \mathbf{s} + \tau \mathbf{t}, \tau \in \mathbb{R}\}$ between \mathcal{G}_1 and \mathcal{G}_2 . Additionally, plot $\mathcal{G}_1, \mathcal{G}_2$ and the angle bisector \mathcal{W} .

Hint: A template for the function Problem2b is available online and can be downloaded from course website.

Hint: Remember that you can use the results from Problem Sheet 2 for both of these problems.

3. Consider a line

$$\mathcal{G} = \{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} = \mathbf{p} + \tau \mathbf{q}, \ \tau \in \mathbb{R}\}$$

where $\mathbf{p}, \mathbf{q} \in \mathbb{R}^2$, $\mathbf{q} \neq \mathbf{0}$ are given column vectors, and a circle

$$\mathcal{C} = \left\{ \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 : (x_1 - c_1)^2 + (x_2 - c_2)^2 = r^2 \right\},\$$

given by its centre $\begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$ and radius r > 0. Write a MATLAB function

```
function intersection = Problem3(r, centre, p, q)
```

that computes points of intersection of \mathcal{G} and \mathcal{C} .

Use a stable implementation when solving the governing quadratic equation. Why is it impossible to properly handle the case when the intersection is (theoretically) only one point?

Hint: For the stable implementation use the function zerosquadpolstab (Code 1.8.10) from the lectures. A template for the function Problem3 is available online and can be downloaded from course website.

- 4. (a) Consider two points $\mathbf{a}, \mathbf{b} \in \mathbb{R}^2$ (column vectors), with $\mathbf{a} \neq \mathbf{b}$, and a line $\mathcal{G} = \{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} = \mathbf{p} + \tau \mathbf{q}, \tau \in \mathbb{R}\}$, given by column vectors $\mathbf{p}, \mathbf{q} \in \mathbb{R}^2, \mathbf{q} \neq \mathbf{0}$. Consider a reflection line $\mathcal{A} = \{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} = \mathbf{s} + \tau \mathbf{t}, \tau \in \mathbb{R}^2\}$ across which \mathbf{a} and \mathbf{b} are reflected onto \mathcal{G} . When is there only one such \mathcal{A} and when are there two such lines of reflection, depending on \mathbf{a}, \mathbf{b} and \mathcal{G} ?
 - (b) Create a MATLAB function

```
function [s, t] = Problem4(a, b, p, q)
```

that computes the line of reflection (by computing column vectors \mathbf{s} and \mathbf{t} which determine it) across which two given points, $\mathbf{a}, \mathbf{b} \in \mathbb{R}^2$ with $\mathbf{a} \neq \mathbf{b}$, are reflected onto a line \mathcal{G} , given through column vectors \mathbf{p} and \mathbf{q} . Plot the points \mathbf{a}, \mathbf{b} , the line \mathcal{G} , the reflection line \mathcal{A} and the reflection points. If \mathbf{a} and \mathbf{b} are on \mathcal{G} , the function should return $\mathbf{s} = \mathbf{p}$ and $\mathbf{t} = \mathbf{q}$.

Hint: This problem is related to Problem 2.(b). Notice that if the vector $\mathbf{b} - \mathbf{a}$ is not parallel to \mathcal{G} then we have two lines of reflection (though you should only plot one of them). Otherwise, if the vector $\mathbf{b} - \mathbf{a}$ is parallel to \mathcal{G} and if $\mathbf{a}, \mathbf{b} \notin \mathcal{G}$, then there is only one line of reflection. A template for the function Problem4 is available online and can be downloaded from course website.

5. Create a MATLAB function

which for three distinct points (column vectors) $\mathbf{a}^1, \mathbf{a}^2$ and $\mathbf{a}^3 \in \mathbb{R}^2$ and a line $\mathcal{G} = \{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} = \mathbf{p} + \tau \mathbf{q}, \tau \in \mathbb{R}\}$, given by column vectors $\mathbf{p}, \mathbf{q} \in \mathbb{R}^2, \mathbf{q} \neq \mathbf{0}$, computes the line of reflection $\mathcal{A} = \{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} = \mathbf{s} + \tau \mathbf{t}, \tau \in \mathbb{R}\}$, if such a line exists, that reflects \mathbf{a}^1 onto \mathbf{a}^1 , and reflects the centroid $\mathbf{c} \in \mathbb{R}^2$ of the triangle $\triangle(\mathbf{a}^1, \mathbf{a}^2, \mathbf{a}^3)$ onto \mathcal{G} . If such an \mathcal{A} does not exist, the function should return $\mathbf{s} = \mathbf{0}, \mathbf{t} = \mathbf{0}$.

Hint: Draw the situation in this problem on a piece of paper. Notice that the solution exists only if $\|\mathbf{a}^1 - \mathbf{c}\| \leq \text{dist}(\mathbf{a}, \mathcal{G})$, where **c** denotes the centroid of the triangle $\triangle(\mathbf{a}^1, \mathbf{a}^2, \mathbf{a}^3)$. How does this relate to Problem 3?

A template for the function Problem5 is available online and can be downloaded from course website.

- Abgabe der Serien: Donnerstag, 10.09.2013 in der Übungsgruppe oder bis 16:00 Uhr in den Fächern im Vorraum zum HG G 53. Die Serien müssen sauber und ordentlich geschrieben und zusammengeheftet abgegeben werden, sofern eine Korrektur gewünscht wird.
- Semesterpräsenz: Aufgrund der grossen Nachfrage haben wir die Präsenz auf zwei Stunden ausgedehnt. Sie findet nun in einem besser geeigneten Raum statt am Montag, 15:15 17:00 Uhr, ETH Zentrum, LFW E 13.
- Homepage: Hier werden zusätzliche Informationen zur Vorlesung und die Serien und Musterlösungen als PDF verfügbar sein. www.math.ethz.ch/education/bachelor/lectures/hs2013/other/linalgnum_BAUG