Problem Sheet 3

1. Let $(V,+, \cdot)$ be a vector space with an inner product $\langle\cdot, \cdot\rangle$, and for $m \in \mathbb{N}$ let $\mathbf{a}^{1}, \ldots, \mathbf{a}^{m}$ be non-zero vectors in V, that is, such that $\mathbf{a}^{j} \neq \mathbf{0}$ for all $j=1, \ldots, m$.
(a) Let us assume that for some $\mathbf{v} \in V$ we have $\left\langle\mathbf{v}, \mathbf{a}^{j}\right\rangle=0$ for all $j=1, \ldots, m$. Show that such a \mathbf{v} is orthogonal to $\operatorname{Span}\left\{\mathbf{a}^{1}, \ldots, \mathbf{a}^{m}\right\}$, that is, show that \mathbf{v} is orthogonal to all vectors which can be written as a linear combination of vectors $\mathbf{a}^{1}, \ldots, \mathbf{a}^{m}$.
(b) Let $V=\mathbb{R}^{3}$, with default vector addition, scalar multiplication and inner product. For $m=2$ take $\mathbf{a}^{1}=\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right), \mathbf{a}^{2}=\left(\begin{array}{c}4 \\ -2 \\ -1\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$. Compute a vector \mathbf{w}, where $\mathbf{w}=\frac{\left\langle\mathbf{v}, \mathbf{a}^{1}\right\rangle}{\left\langle\mathbf{a}^{1}, \mathbf{a}^{1}\right\rangle} \mathbf{a}^{1}+\frac{\left\langle\mathbf{v}, \mathbf{a}^{2}\right\rangle}{\left\langle\mathbf{a}^{2}, \mathbf{a}^{2}\right\rangle} \mathbf{a}^{2}$,
verify that $\left\langle\mathbf{a}^{1}, \mathbf{a}^{2}\right\rangle=0$ and show that $\mathbf{v}-\mathbf{w}$ is orthogonal to $\operatorname{Span}\left\{\mathbf{a}^{1}, \mathbf{a}^{2}\right\}$.
(c) For an arbitrary vector $\mathbf{v} \in V$ we define a vector

$$
\begin{equation*}
\mathbf{w}:=\sum_{j=1}^{m} \frac{\left\langle\mathbf{v}, \mathbf{a}^{j}\right\rangle}{\left\langle\mathbf{a}^{j}, \mathbf{a}^{j}\right\rangle} \mathbf{a}^{j} \tag{1}
\end{equation*}
$$

Show that if all \mathbf{a}^{j} 's are pairwise orthogonal, that is, if we have

$$
\left\langle\mathbf{a}^{l}, \mathbf{a}^{j}\right\rangle=0 \text { for all } l, j \in\{1, \ldots, m\} \text { such that } l \neq j
$$

then the vector $\mathbf{v}-\mathbf{w}$ is orthogonal to $\operatorname{Span}\left\{\mathbf{a}^{1}, \ldots, \mathbf{a}^{m}\right\}$.
(d) Let $V=\mathbb{P}_{2}$, the set of polynomials of degree less than or equal to 2 , with standard operations

$$
(\mathbf{p}+\mathbf{q})(x)=\mathbf{p}(x)+\mathbf{q}(x) \text { and }(\alpha \mathbf{p})(x)=\alpha \mathbf{p}(x) \text { for all } \mathbf{p}, \mathbf{q} \in \mathbf{P}_{2}
$$

Let us also define an inner product on \mathbb{P}_{2} by

$$
\langle\mathbf{p}, \mathbf{q}\rangle=\int_{0}^{1} \mathbf{p}(x) \mathbf{q}(x) d x \quad \text { for } \mathbf{p}, \mathbf{q} \in \mathbb{P}_{2}
$$

Show that, if we take $\mathbf{a}^{1}, \mathbf{a}^{2}, \mathbf{v} \in \mathbb{P}_{2}$ as

$$
\begin{aligned}
\mathbf{a}^{1}(x) & =1, \\
\mathbf{a}^{2}(x) & =1-2 x, \quad x \in \mathbb{R} \\
\mathbf{v}(x) & =x^{2}
\end{aligned}
$$

then \mathbf{a}^{1} and \mathbf{a}^{2} are orthogonal vectors in \mathbb{P}_{2}. Compute the polynomial \mathbf{w} using formula (1).
2. (a) Write a MATLAB function

```
function aReflect = Problem2a(a, p, q)
```

that takes as arguments a point $\mathbf{a} \in \mathbb{R}^{2}$ (a column vector) and column vectors $\mathbf{p}, \mathbf{q} \in \mathbb{R}^{2}$, $\mathbf{q} \neq \mathbf{0}$, which determine a line $\mathcal{G}=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x}=\mathbf{p}+\tau \mathbf{q}, \tau \in \mathbb{R}\right\}$. The function is supposed to return the reflection of a across \mathcal{G}. Additionaly, plot \mathbf{a}, \mathcal{G} and the reflection of a.

Hint: A template for the function Problem2a is available online and can be downloaded from course website.
(b) Write a MATLAB function

$$
\text { function }[s, t]=\operatorname{Problem} 2 b(p 1, q 1, p 2, q 2)
$$

which for two lines $\mathcal{G}_{1}=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x}=\mathbf{p}^{1}+\tau \mathbf{q}^{1}, \tau \in \mathbb{R}\right\}$ and $\mathcal{G}_{2}=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x}=\right.$ $\left.\mathbf{p}^{2}+\tau \mathbf{q}^{2}, \tau \in \mathbb{R}\right\}$, given by column vectors $\mathbf{p}^{1}, \mathbf{q}^{1} \in \mathbb{R}^{2}, \mathbf{q}^{1} \neq \mathbf{0}$ and $\mathbf{p}^{2}, \mathbf{q}^{2} \in \mathbb{R}^{2}, \mathbf{q}^{2} \neq \mathbf{0}$, computes column vectors $\mathbf{s}, \mathbf{t} \in \mathbb{R}^{2}$ which define the angle bisector $\mathcal{W}=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x}=\right.$ $\mathbf{s}+\tau \mathbf{t}, \tau \in \mathbb{R}\}$ between \mathcal{G}_{1} and \mathcal{G}_{2}. Additionaly, plot $\mathcal{G}_{1}, \mathcal{G}_{2}$ and the angle bisector \mathcal{W}.
Hint: A template for the function Problem2b is available online and can be downloaded from course website.
Hint: Remember that you can use the results from Problem Sheet 2 for both of these problems.
3. Consider a line

$$
\mathcal{G}=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x}=\mathbf{p}+\tau \mathbf{q}, \tau \in \mathbb{R}\right\}
$$

where $\mathbf{p}, \mathbf{q} \in \mathbb{R}^{2}, \mathbf{q} \neq \mathbf{0}$ are given column vectors, and a circle

$$
\mathcal{C}=\left\{\mathbf{x}=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}:\left(x_{1}-c_{1}\right)^{2}+\left(x_{2}-c_{2}\right)^{2}=r^{2}\right\}
$$

given by its centre $\binom{c_{1}}{c_{2}}$ and radius $r>0$. Write a MATLAB function

$$
\text { function intersection }=\text { Problem3(r, centre, } p, q)
$$

that computes points of intersection of \mathcal{G} and \mathcal{C}.
Use a stable implementation when solving the governing quadratic equation. Why is it impossible to properly handle the case when the intersection is (theoretically) only one point?

Hint: For the stable implementation use the function zerosquadpolstab (Code 1.8.10) from the lectures. A template for the function Problem3 is available online and can be downloaded from course website.
4. (a) Consider two points $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{2}$ (column vectors), with $\mathbf{a} \neq \mathbf{b}$, and a line $\mathcal{G}=\left\{\mathbf{x} \in \mathbb{R}^{2}\right.$: $\mathbf{x}=\mathbf{p}+\tau \mathbf{q}, \tau \in \mathbb{R}\}$, given by column vectors $\mathbf{p}, \mathbf{q} \in \mathbb{R}^{2}, \mathbf{q} \neq \mathbf{0}$. Consider a reflection line $\mathcal{A}=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x}=\mathbf{s}+\tau \mathbf{t}, \tau \in \mathbb{R}^{2}\right\}$ across which \mathbf{a} and \mathbf{b} are reflected onto \mathcal{G}. When is there only one such \mathcal{A} and when are there two such lines of reflection, depending on \mathbf{a}, \mathbf{b} and \mathcal{G} ?
(b) Create a MATLAB function

```
function [s, t] = Problem4(a, b, p, q)
```

that computes the line of reflection (by computing column vectors \mathbf{s} and \mathbf{t} which determine it) across which two given points, $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{2}$ with $\mathbf{a} \neq \mathbf{b}$, are reflected onto a line \mathcal{G}, given through column vectors \mathbf{p} and \mathbf{q}. Plot the points \mathbf{a}, \mathbf{b}, the line \mathcal{G}, the reflection line \mathcal{A} and the reflection points. If \mathbf{a} and \mathbf{b} are on \mathcal{G}, the function should return $\mathbf{s}=\mathbf{p}$ and $\mathbf{t}=\mathbf{q}$.

Hint: This problem is related to Problem 2.(b). Notice that if the vector $\mathbf{b}-\mathbf{a}$ is not parallel to \mathcal{G} then we have two lines of reflection (though you should only plot one of them). Otherwise, if the vector $\mathbf{b}-\mathbf{a}$ is parallel to \mathcal{G} and if $\mathbf{a}, \mathbf{b} \notin \mathcal{G}$, then there is only one line of reflection. A template for the function Problem4 is available online and can be downloaded from course website.
5. Create a MATLAB function

$$
\text { function }[s, t]=\operatorname{Problem} 5(a 1, a 2, a 3, p, q)
$$

which for three distinct points (column vectors) $\mathbf{a}^{1}, \mathbf{a}^{2}$ and $\mathbf{a}^{3} \in \mathbb{R}^{2}$ and a line $\mathcal{G}=\left\{\mathbf{x} \in \mathbb{R}^{2}\right.$: $\mathbf{x}=\mathbf{p}+\tau \mathbf{q}, \tau \in \mathbb{R}\}$, given by column vectors $\mathbf{p}, \mathbf{q} \in \mathbb{R}^{2}, \mathbf{q} \neq \mathbf{0}$, computes the line of reflection $\mathcal{A}=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x}=\mathbf{s}+\tau \mathbf{t}, \tau \in \mathbb{R}\right\}$, if such a line exists, that reflects \mathbf{a}^{1} onto \mathbf{a}^{1}, and reflects the centroid $\mathbf{c} \in \mathbb{R}^{2}$ of the triangle $\triangle\left(\mathbf{a}^{1}, \mathbf{a}^{2}, \mathbf{a}^{3}\right)$ onto \mathcal{G}. If such an \mathcal{A} does not exist, the function should return $\mathbf{s}=\mathbf{0}, \mathbf{t}=\mathbf{0}$.

Hint: Draw the situation in this problem on a piece of paper. Notice that the solution exists only if $\left\|\mathbf{a}^{1}-\mathbf{c}\right\| \leq \operatorname{dist}(\mathbf{a}, \mathcal{G})$, where \mathbf{c} denotes the centroid of the triangle $\triangle\left(\mathbf{a}^{1}, \mathbf{a}^{2}, \mathbf{a}^{3}\right)$. How does this relate to Problem 3?
A template for the function Problem5 is available online and can be downloaded from course website.

- Abgabe der Serien: Donnerstag, 10.09.2013 in der Übungsgruppe oder bis 16:00 Uhr in den Fächern im Vorraum zum HG G 53. Die Serien müssen sauber und ordentlich geschrieben und zusammengeheftet abgegeben werden, sofern eine Korrektur gewünscht wird.
- Semesterpräsenz: Aufgrund der grossen Nachfrage haben wir die Präsenz auf zwei Stunden ausgedehnt. Sie findet nun in einem besser geeigneten Raum statt am Montag, 15:15-17:00 Uhr, ETH Zentrum, LFW E 13.
- Homepage: Hier werden zusätzliche Informationen zur Vorlesung und die Serien und Musterlösungen als PDF verfügbar sein.
www.math.ethz.ch/education/bachelor/lectures/hs2013/other/linalgnum_BAUG

