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Solution 3

Fundamental groups-covering spaces

1 Use Van Kampen theorem to show that the fundamental group π1(X,x0)

of a CW-complex X with a single zero cell x0 admits a presentation

< S|R > where S is the set of one cells of X and R is parametrized

by the set of two cells of X.

Solution This is proven in [Hatcher, Proposition 1.26]

2 Let K be the Klein bottle and X the subspace of R3 consisting of a

Klein bottle that self intersects in a circle (exercise 4, problem set 1).

(a) Determine the fundamental group of K and of X.

Solution Applying exercise 1 we get π1(K,x0) =< a, b|aba−1b >.

We know from exercise 4 problemset 1 that X is homotopy equiv-

alent to S2 ∨ S1 ∨ S1, in particular Van Kampen’s theorem tells

us that π1(X,x) = F2.

(b) What is the homomorphism f∗ : π1(K, p)→ π1(X, f(p)) induced

by the natural projection f : K → X?

Solution In order to prescribe the homomorphism it is enough

to determine the image of the generators of the group. A repre-

sentative β for the class b can be chosen to be the horizontal line

in the square. Since f(b) bounds a disc, we get that its image is

trivial in the fundamental group. The curve f(a), instead, is one

of the two generators of the fundamental group π1(X, f(p)).

(c) Is it injective? Is it surjective?

Solution The map is not injective nor surjective: the element b

belongs to the kernel of f∗, and one of the two generators of F2

do not belong to the image.
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3 Let X,Y be connected n-dimensional topological manifolds.

(a) If we denote by T 2 the torus S1 × S1 determine what is T 2#T 2.

Solution T 2#T 2 is the surface of genus 2, Σ2.

(b) If n ≥ 3, and X,Y are connected, determine π1(X#Y, x0) know-

ing π1(X,x) and π1(Y, y).

Solution It is an easy application of Van Kampen Theorem

that if x0 belongs to the boundary sphere than π1(X#Y, x0) =

π1(X,x0)∗π1(Y, x0). Indeed we can consider the two open sets U1

that consists of the union of X and a small neighborhood VY of

BY in Y with the property that VY \BY retracts on ∂BY , and U2

consisting of the union of Y and a small open neighborhood VX of

BX in X with the analogue property. The intersection U1 ∩U2 is

connected and simply connected (since it retracts on Sn−1 that

is simply connected by our hypothesis on n), we get that the

fundamental group of the space is the free product of the funda-

mental groups of the two open subsets Y and X. Moreover since

Y is obtained by Y by adding a (contractible) n−dimensional ball

(resp. X from X), one gets, applying Van Kampen once more

that π1(X,x0) = π1(X,x0) and similarly for Y and Y .

4 Let us denote by Σ0,3 the complement in the sphere S2 of three open

discs, and by Σ1,1 the complement in the torus T = S1×S1 of an open

disc.

(a) Determine the fundamental groups π1(Σ0,3, x) and π1(Σ1,1, x).

Solution. Both groups are free on two generators, as can be seen

from the fact that the two surfaces retract on graphs. In fact the

surface Σ0,3 is homeomorphic to the complement in the disc D2

of radius 5 in R2 of the discs with centers (±2, 0) and radius 1.

It is easy to check that the surface Σ0,3 deformation retracts on

the wedge of the two circles with center (±2, 0) and radius 2. In

particular the fundamental group of Σ0,3 is free and generated by

the loops a, b in the picture.

The torus with one disc removed, deformation retracts on its one

skeleton, hence its fundamental group is free on two generators.
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(b) Consider the map f : Σ0,3 → Σ1,1 obtained by identifying two

boundary circles of Σ0,3. Determine the map f∗ : π1(Σ0,3, x0) →
π1(Σ1,1, f(x0)).

Solution. Denoting by a, b the generators of π1(Σ0,3, x0) and by

c, d the generators of π1(Σ1,1, y) in the picture, we claim that if

h is the path pictured in the picture below, we have that f∗a =

βh(c) and f∗b = βh(d−1cd). In fact we can chose the map f so

that the image of the two circles bounding the gray area in Σ0,3

are mapped to the curve c. Under such a map the images of the

curves a, b are shown in the second picture, and it is easy to check

that βhf∗a = c and βhf∗b = d−1cd, by retracting the curves on

the boundary.
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(c) Is f∗ injective? Is it surjective? You can use that any subgroup

of a free group is free.

Solution. f∗ is injective. In fact the subgroup of π1(Σ1,1, x) gen-

erated by c and d−1cd is free on two generators: in fact it is free

being a subgroup of a free group, it has at most two generators

being the image of a group generated by two elements, and it has

precisely two generators since the element d−1cd of F2 cannot be

written as ck for any k. The homomorphism f∗ is not surjective.

Assume by contraddiction that f∗ is surjective, then also the in-
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duced homomorphism f∗ : Z2 → Z2 would be surjective (where

Z2 is the abelianization of F2). But that is not, since d is not in

the image of f∗.

5. Let p : X → X be a covering space, and let A be a subspace of X.

Denote by A the subset of X given by A = p−1(A).

(a) Show that the restriction p : A→ A is a covering space.

Solution. Both spaces A and A are understood with the sub-

space topology. The restriction of p is clearly continuous. More-

over, since p : X → X is a covering space, for each point a ∈ A
there exists an open neighborhood U of a such that p−1U is a

disjoint union of open sets each of which is mapped by p homeo-

morphically to U . The open neighborhood U ∩A of a in A clearly

satisfies the same property. Therefore the restriction is a covering

space.

(b) Assume that X is the universal covering of X. Is A the universal

covering of A?

Solution No, it is not: to get a counterexample we can take X

to be equal to R2 and A to be the unit circle. It is not hard to

show that under these hypotheses A is the universal cover of A

if and only if the inclusion i : A→ X induces an isomorphism on

fundamental groups, that the set A is connected if and only if i∗
is surjective, and that each component of A is simply connected

if and only if i∗ is injective.

6. Find all connected two sheeted and three sheeted covering spaces of

S1 ∨ S1 up to isomorphism of covering spaces without basepoints.

Solution Let us consider the CW structure on S1 ∨ S1 consisting of

a single zero cell, and two 1 cells with the only possible gluing map.

A topological space that is the domain of a two sheeted covering map

of X is a CW complex Y with two 0 cells and four 1 cells. In order

to describe also the covering map it is useful to add arrows and colors

to the 1 cells, this will determine for us uniquely what is the image

of the cell under the covering map. It is easy to check that there are

4 coloured CW complexes with two 0 cells and four 1 cells, and only

three such complexes cover X and are connected:
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There are seven nonequivalent three sheeted coverings of S1 ∨S1, and

they are shown in the picture:
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In order to show that these are all, notice that the three sheeted cov-

erings p : X → X without basepoint are parametrized by the orbits of

the action of the permutation group S3 on S3 × S3 by conjugation on

both factors. Indeed in order to prescribe a three sheeted covering it

is enough to determine how do the two generators of the fundamental

group of S1 ∨ S1 act on the fiber (that is a set of cardinality 3). An

isomorphism of covering spaces corresponds to a permutation of the

fiber, and this correspond to the action of S3 on S3 × S3 by conjuga-

tion on both factors. Up to conjugation we only care about the lengths

of the cycles of the permutation corresponding to the first generator,

that can either be a three cycle, or a transposition, or the trivial per-

mutation. The first four coverings have a three cycle, the fifth and

the sixth have a permutation, the last one has the trivial permutation.

In order to determine the equivalence classes of coverings for which

the image of the first generator is a three cycle, we should consider

the equivalence classes for the action of the stabilizer of a three cycle

(that is the group generated by the three cycle itself) on S3. There

are four equivalent classes: the two three cycles are nonequivalent, all

the permutations are equivalent, the trivial permutation gives the last

equivalence class. If the image of the first generator is a transposition

there are still four equivalence classes (two inequivalent transpositions,

the three cycles, the trivial permutation) but only two give connected
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coverings. Only one of the three equivalence classes for the action of

S3 that is the stabilizer of the identity give connected coverings: the

class of the three cycles.

7. Consider the spaces X,Y of exercise 3, problem set 1, and the space

Z = S1∨S2. Draw a picture of the universal coverings of X, Y and Z.

Solution Y is simply connected, in particular it is its own universal

cover. For the spaces X,Z we have, for example:

In particular the universal covers of X and Y are homotopy equivalent,

but not homeomorphic.

8. Let X,Y be connected, locally connected, semilocally simply con-

nected topological spaces, and let X̃, Ỹ be the universal coverings.

(a) Show that for every continuous map f : X → Y there exists a

map f̃ : X̃ → Ỹ making the following diagram commutative.

X̃
f̃ //

��

Ỹ

��
X

f // Y

Solution We consider the map g = f ◦ p first:

X̃
f̃ //

g

����

Ỹ

��
X

f // Y

Since X̃ is simply connected the map g∗ : π1(X̃, x)→ π1(Y, g(x))

is injective, in particular g lifts to a map f̃ .
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(b) Is such a map f̃ unique?

Solution No, as soon as π1(Y ) is not trivial, the map f̃ is not

unique. In fact the image under f̃ of the basepoint x can be any

element of the fiber p−1(g(x)) and this consists of more than one

point if π1(Y, y) is non trivial.

(c) Assume that f is injective, show that f̃ is injective if and only if

f∗ : π1(X,x)→ π1(Y, f(x)) is injective.

Solution. Let us assume by contraddiction that f̃ is not injec-

tive. Then there are two points x, y in X̃ that have the same

image. From the commutativity of the diagram and the injec-

tivity of f we get that x, y belong to the same fiber of p. Let

γ : [0, 1] → X̃ be a map with γ(0) = x, γ(1) = y. The loop p ◦ γ
defines an element in the fundamental group π1(X, p(x)). We

claim that [γ] belongs to the kernel of f∗: in fact f̃ ◦ γ is a closed

loop in Ỹ that is hence homotopically trivial (since Ỹ is simply

connected). In particular f∗[p ◦ γ] = [p ◦ f̃ ◦ γ] = p∗[f̃ ◦ γ] = 0 as

an element of π1(Y, f(p(x))).

Viceversa assume f∗ is not injective and let γ be a loop with

[γ] ∈ ker f∗. Let γ be a lift of γ to X̃, the two (distinct) endpoints

x, y of γ are mapped under f̃ to the same point.
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