Prof. Emmanuel Kowalski

Exercise sheet 1

The content of the marked exercise (*) should be known for the exam.

- **1.** Let (G, \cdot) be a group. We say that G is abelian if $\forall x, y \in G$, $x \cdot y = y \cdot x$. For $g \in G$ we define the *order* of g, which we denote $\operatorname{ord}_G(g)$, as the minimal positive integer n such that $g^n = 1_G$, if such n exists. Else we say that g has infinite order. Prove the following statements for a group G:
 - 1. If $e \in G$ is s.t. $\forall x \in G$, $e \cdot x = x$, then $e = 1_G$.
 - 2. G is abelian if and only if the inversion map $G \to G$, $x \mapsto x^{-1}$ is a group homomorphism.
 - 3. If $g^2 = 1_G$ for every $g \in G$, then G is abelian.
 - 4. If $g \in G$ has finite order, g^{-1} is a power of g.
 - 5. If G is finite, every $g \in G$ has finite order.
- **2.** We will here consider *monoids*, which are defined in the same way as groups, but without inversion map. More precisely, a *monoid* consists of a set S together with a map $-\cdot -: G \times G \to G$ and a distinguished element $1_S \in S$ satisfying the following axioms:
 - $\bullet \ \forall x,y,z \in S, \, (x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - $\bullet \ \forall x \in S, 1_S \cdot x = x \cdot 1_S = x$

We say that $y \in S$ is a left (resp., right) inverse of $x \in S$ if $y \cdot x = 1_S$ (resp., $x \cdot y = 1_S$).

Let X be a non-empty set and consider the set of functions $\operatorname{End}(X) = \{f : X \to X\}.$

- 1. Prove that $\operatorname{End}(X)$, together with the composition of functions \circ , is a monoid for every set X.
- 2. Prove that $f \in \text{End}(X)$ has a left (resp., right) inverse if and only if f is injective (resp., surjective).
- 3. For which sets X does there exist $f \in \text{End}(X)$ which has a left inverse but no right inverse?

[You can use this formulation of the axiom of choice: Let $\{X_i\}_{i\in I}$ be a family of nonempty sets indexed by $I \neq \emptyset$. Then there exists a family $\{x_i\}_{i\in I}$ such that $x_i \in X_i$]

- **3.** Show that there are precisely two non-isomorphic groups of order 4, and construct their multiplication table.
- **4.** Consider the set $\mathbb{Z} \times \mathbb{Z}$ together with the binary operation * defined by

$$(a,h)*(b,k) = (a+(-1)^h b, h+k)$$

- 1. Show that $(\mathbb{Z} \times \mathbb{Z}, *)$ is a group and that it is not abelian.
- 2. Find all elements having finite order.
- 3. Consider the projection maps $\pi_1, \pi_2 : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by $\pi_1((m, n)) = m$ and $\pi_2((m, n)) = n$. Determine if they are morphism of groups $(\mathbb{Z} \times \mathbb{Z}, *) \to (\mathbb{Z}, +)$.
- **5.** (*) Fix an integer n > 1 and consider the symmetric group $S_n := \text{Sym}(\{1, \dots, n\})$. For $p(X_1, \dots, X_n) \in \mathbb{C}[X_1, \dots, X_n]$ and $\sigma \in S_n$, define $p_{\sigma} = p(X_{\sigma(1)}, \dots, X_{\sigma(n)})$. Let $f := \prod_{1 \leq i < j \leq n} (X_i X_j) \in \mathbb{C}[X_1, \dots, X_n]$.
 - 1. Prove that for every permutation $\sigma \in S_n$, there exists a unique element $\alpha(\sigma) \in \{\pm 1\}$ such that $f_{\sigma}(X) = \alpha(\sigma)f$.
 - 2. Show that the resulting map

$$\alpha: S_n \to \{\pm 1\}$$

is a group homomorphism.

3. Let $a \neq b$ be elements of $\{1, \ldots, n\}$, and consider the permutation $\tau \in S_n$ switching a and b and fixing all the other elements. Show that $\alpha(\tau) = -1$.

Due to: 25 September 2014, 3 pm.