Prof. Emmanuel Kowalski

Exercise sheet 10

The content of the marked exercises (*) should be known for the exam.

- 1. (*) (Characterization of gcd and lcm in terms of principle ideals). Let A be a PID and take two non-zero elements $a, b \in A$. Show:
 - 1. aA + bA = dA, where d is a greatest common divisor of (a, b) in the sense that
 - a) d|a and d|b, and
 - b) for all $d' \in A$ s.t. d'|a and d'|b, we have d'|d.
 - 2. $aA \cap bA = mA$, where m is a least common multiple of (a,b) in the sense that
 - a) a|m and b|m, and
 - b) for all $m' \in A$ s.t. a|m' and b|m', we have m|m'.
 - 3. In the factorial ring $A = \mathbb{C}[X,Y]$ there are elements a and b which are irreducible, with $aA \neq bA$, but for which $aA + bA \neq A$.
- **2.** Let A be a factorial ring.
 - 1. Suppose that $a \in A \setminus A^{\times}$, $a \neq 0$, with $a = \prod_{i=1}^{k} r_i^{n_i}$ for some $k, n_i \in \mathbb{Z}_{>0}$ and some irreducible elements $r_i \in A$ such that $r_i A \neq r_j A$ for $i \neq j$. Prove that for every $b \in A$, we have that b divides a if and only if we can write

$$b = u \prod_{i=1}^{k} r_i^{m_i}$$
, for some $u \in A^{\times}$ and $0 \le m_i \le n_i$ for all i .

2. Let A be a PID, and $a, b \in A$ elements of the form $a = \prod_{i=1}^k r_i^{n_i}$ and $b = \prod_{j=1}^l s_j^{m_j}$, where $r_i, s_j \in A$ are all irreducible elements, $k, l, m_i, n_j \in \mathbb{Z}_{>0}$, and $r_i A \neq r_{i'} A$ for $i \neq i'$ and $s_j A \neq s_{j'} A$ for $j \neq j'$. Prove that a gcd (defined as in Exercise 1) of a and b is

$$d = \prod_{h=1}^{f} q_h^{l_h},$$

where

- $\{q_1, \ldots, q_f\}$ is a finite subset of irreducible elements of A,
- $q_{\alpha}A \neq q_{\beta}A$ for $\alpha \neq \beta$,
- $\forall h \in \{1, ..., f\}$, there exist i, j such that $q_h A = r_i A = s_j A$ and $l_h = \min(m_i, n_j)$.

3. (*) (Another formulation of the classification of finitely generated torsion modules) Let A be a PID and $M \neq 0$ a finitely generated torsion module. Show that there exists $k \geq 1$ and elements $a_1|a_2|\cdots|a_k \in A$ such that $a_i \neq 0$, $a_i \notin A^{\times}$ for all i and

$$M \cong A/a_1A \oplus \cdots \oplus A/a_kA$$
.

 $[\mathit{Hint:}$ Use the classification you have seen in class and the Chinese Remainder Theorem]

- **4.** Let G be a finite abelian group generated by two elements.
 - 1. Show that

$$G \cong \mathbb{Z}/d_1\mathbb{Z} \oplus \mathbb{Z}/d_1d_2\mathbb{Z},$$

where $d_1, d_2 \ge 1$ are integers.

- 2. For every prime p, determine G(p).
- **5.** Let G be a finite abelian group and H be a subgroup of G. Prove: there exists a subgroup $H' \leq G$ such that $H' \cong G/H$. [Hint: Abelian groups are \mathbb{Z} -modules]

Due to: 27 November 2014, 3 pm.