D-MATH Algebra 1 HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 10

The content of the marked exercises (*) should be known for the exam.

1. (*) (Characterization of ged and lem in terms of principle ideals). Let A be a PID and
take two non-zero elements a,b € A. Show:

1. aA+bA = dA, where d is a greatest common divisor of (a,b) in the sense that
a) d|a and d|b, and
b) for all d € A s.t. d’|a and d'|b, we have d'|d.

2. aANbA =mA, where m is a least common multiple of (a,b) in the sense that
a) a|lm and blm, and
b) for all m’ € A s.t. alm’ and b|m’, we have m|m’.

3. In the factorial ring A = C[X, Y] there are elements a and b which are irreducible,
with aA # bA, but for which aA + bA # A.

Solution:

1. Being A a PID, there exists d € A such that dA = aA + bA. Then we have
that a,b € dA, which means that d|a and d|b, proving property (a). Moreover,
for d € A a divisor of both a and b, we have a,b € d'A, which implies that
dA = aA +bA C d'A, so that in particular d € d'A, meaning that d'|d, which
proves (b).

2. Again A is a PID and there exists m € A such that mA = aANbA. Then m € aA
and m € bA, so that a|m and b|m, proving (a). For (b), suppose that m' is a
multiple of both a and b. Then m’ € aANbA = mA, so that m|m’, which proves
(b).

3. Let a = X and b =Y. Then a is irreducible, since for any factorization X = fg,
we have that f and g are constant in Y and one of them has to be constant in
X, so that f or g is a unit. Similarly, one can prove that b is irreducible. Since
X ¢ Y- A (by reasoning on the degree in Y'), we have aA # bA. But aA+bA is not
a principal ideal (as we proved in Exercise sheet 8, Exercise 4), and in particular
it differs from A.

2. Let A be a factorial ring.
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1. Suppose that a € A\ A%, a # 0, with a = Hle " for some k,n; € Z~o and some
irreducible elements r; € A such that r;A # r; A for ¢ # j. Prove that for every
b € A, we have that b divides a if and only if we can write

k
b= uHr;m, for some u € A* and 0 < m; < n; for all s.
i=1
2. Let AbeaPID, and a,b € A elements of the form a = Hle r and b = Hé’:l s;-nj,
where r;, s; € A are all irreducible elements, k,l,m;,n; € Z~o, and ;A # ry A for
i #1i' and sjA # sy A for j # j'. Prove that a ged (defined as in Exercise 1) of a

and b is
! !
d = H tha
h=1
where
o {q1,...,q} is a finite subset of irreducible elements of A,

o GoA # qpA for a £ B,
o Vh € {1,...,f}, there exist 4,j such that ¢4 = 1A = s;A and [}, =
min(m;, n;).

Solution:

1. The “if” part is easy: for b of the given form, we have that

k k k k

_ ng __ mi -1 n;—m; __ -1 n;—m;
a—Hri —u(Hri )u Hri = bu Hri ,

=1 =1 i=1 =1

so that b|a.

Conversely, assume that bla, and write a = be for some ¢ € A. As A is a UFD,
b and ¢ both have a decomposition into irreducible elements, b = [, s and
c=1] jes - Multiplying those two decompositions together we obtain a decompo-
sition into irreducibles for a. Then, again because A is a UFD, there is a bijection
of indexes v : HUJ — J;_; LJo1{¢} such that each s, or g; is equivalent to the
corresponding 7; (that is, they are equal up to multiplying by a unit). In particu-
lar, we have that for each h € H there exists up, € A* such that s, = UpT~(h), and
as v is a bijection, for each i € I we have that 0 < m; := |{h € H : i =v(h)}| < n,.
So we can conclude that

k
=TT o0 = T mrs = o117
=1

heH heH

where v = [ [}, c g un-
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2. Now let a = Hle ritand b = ngl s;nj , and let d be a greatest common divisor
of them. Then d|a and d|b, so that applying previous point twice, we can write,

for some u,v € A* and some integers 0 < \; < n; and 0 < p; < my,

k

l
Ni g My
uHri —d—vHsj .
j=1

=1

Then, as A is a UFD, and using the hypothesis that the r;’s (resp., the s;’s) are
pairwise non-equivalent, we get a bijection

91 :={i: N\ #£0} = J = {j:p; #0},

such that sy(;y = wir; and pyy = A; for all i € I', where w; € A*. Notice that \; =
Py < iy My for each @ € T ' but that if such an inequality is strict for both n;
and my(i), then by multiplying r; - d would still divide both a and b, contradicting
maximality of d (as 7;d { d, since r; ¢ A*). Hence \; = pg(;) = min(ng, my())-
The statement is proven by “renaming” some indexes and elements:

Take f := |I'|, H = {1,..., f} fix a bijection £ : H — I'. Then define, for all
h € H, g = r¢()- Those are clearly irreducible pairwise non-equivalent elements
of A. The last of the three conditions is finally satisfied by taking i = {(h) and
j =19(&(h)) for each h € H.

3. (*) (Another formulation of the classification of finitely generated torsion modules)
Let A be a PID and M # 0 a finitely generated torsion module. Show that there exists
k > 1 and elements aq|az] - -|ax € A such that a; # 0, a; ¢ A* for all i and

M=AlajA® - © AlaiA.

[Hint: Use the classification you have seen in class and the Chinese Remainder Theo-
rem]|

Solution:

By classification for finitely generated torsion modules over a PID, we have that there
exist finitely many (pairwise non-equivalent) irreducible elements p1, ..., p, € A such
that M = ", M(p;) (taking only the irreducible elements p such that M(p) # 0,
which can be proven to be finitely many), and for each ¢ there exist a positive integer
s; and positive integers v;1 < --- < 15, such that

8
M(pi) = EB A/p;A.
j=1

Let now k = max;(s;). We add some zeroes in the beginning of the sequences of

exponents (V;1,...,Vs) in order to make them all of length k. More precisely, we
define, for 1 <i<mand 1 <j <k,

U”_{O itj<k—s

*J Vi j—(k—s;) lfj >k —s;
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Then clearly we have that v; ; < v;j41, for each ¢ and j for which the two sides are
defined, so that p;"’|p;*"**. Moreover, as p? = 1 for each i and A/1A = 0, we have

that
=B @A/M

Next, define a; = [, pi” for 1 < j < k and notice that ajlaj1; for 1 <j <k—1,
with a; # 0 for each j as it is a product of irreducible elements. Furthermore, a; ¢ A~
(so that non of the a; is a unit being divisible by a1 ), since by maximality of k& we have
that v;; # 0 for some i, for which then p;la;. The a; satisfy the desired divisibility
property, and we are done if we prove the required isomorphism. We have

M = @@A/pf’% @@A/pfl% @A/aa

i=1 j=1 7j=1 =1

where the last isomorphism is obtained by applying Chinese Remainder Theorem,
which can be done since the p; are pairwise non-equivalent, so that the pfi’j are pairwise
coprime.

. Let GG be a finite abelian group generated by two elements.

1. Show that
G= Z/dlZ D Z/dldQZ,
where dy,ds > 1 are integers.

2. For every prime p, determine G(p).
Solution:

1. Let G = (a,b), o = ordg(a) and f = ordg(b). By the classification theorem
for modules over a PID (which can be applied since Z is a PID), we have that
G = P G(p), as G is torsion, where the sum ranges on positive prime numbers, and
G(p) = 0 for almost all p. Then for each prime p we have a canonical projection
mp : G — G(p), and G(p) is generated by mp,(a) and mp,(b). Still by the classification
theorem for finitely generated modules, we can then write, for each p,

G(p) = Z/p""Z @ Z/p™Z,

with u, < vp, and v, # 0 for only finitely many primes p. Then using the same
argument of the previous exercise (with M = G, R = Z and k = 2), we obtain
that G = Z/a1Z & 7./ ax7Z, with a1]as (those two numbers are equal, respectively,
to the products [[,p“» and [[,p*). Choosing d1 = a1 and d2 = az/a1 we obtain

G = Z/dlz D Z/dldQZ,

as desired.
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2. By construction, for each prime p we have that G(p) = Z/p"“rZ @ 7 /p*» 7, where
up, and v, are the exponents with which p appears in the factorization into primes
of the numbers d; and dyds, respectively. In particular, G(p) = 0 if and only if
p{dy and p t da. Moreover, G(p) is cyclic of order p* if and only if p { d; and
pF||dy (i.e., p¥|da but p*1 f dy). The only other possibility is that p|d; and p|ds.
in which case G(p) is not cyclic.

5. Let G be a finite abelian group and H be a subgroup of G. Prove: there exists a
subgroup H' < G such that H' =2 G/H. [Hint: Abelian groups are Z-modules]

Solution:

By the classification theorem for modules over a PID (which can be applied since Z
is a PID), we have that there exists finitely many (eventually zero) positive prime
numbers pi,...,pm, such that G = @;", G(p;) and G(p;) # 0. Now we claim that
for any subgroup H < G we have H(p;) < G(p;). This will allow us to restrict our
attention to p-groups, as a direct sum of quotients over coprime subgroups can be seen
as a quotient by the Chinese Remainder Theorem.

To prove the claim, it is enough to check that if A;, As and C are abelian groups
with C' = A; & Ay, with a; = |A1]| and as = |Az| coprime numbers, then for every
subgroup D < C we have D = pi(D) @ p2(D), where the maps p; : C — A; are the
canonical projection. Indeed, we have by definition of direct sum the inclusion “C”.
Moreover, we have D = ajas for some uniquely determined «;la; (as a; and ag are
coprime). Also, p;(D) < A;, so that by Lagrange’s Theorem |p;(D)| divides a;, but
it also divides |D| (easily seen via the map p;), so that |p;(D)| has to divide «;, and
Ip1(D) ® p2(D)| = |p1(D)| - |p2(D)| < g = |D|, which together with the previous
inclusion gives equality.

Hence without loss of generality we can assume that G = G(p) for some prime number
p, that is, G is an abelian p-group. Then H < G is also an abelian p-group, and so is
K := G/H. Then the classification of finitely generated torsion module allows us to
write down G and K as finite direct sums of cyclic groups of order equal to a prime
power, and we know that the number of direct summands in this decomposition is
equal to the minimal number of generators of the group. Since generators of G are
mapped via the quotient map p : G — K to generators of K, we have some integers
1<k 1< <~ <oy and 0 <wy <--- <wy such that

k k
G=@z/p"2 and K = P z/p" 2.
=1 =1

To conclude, it is enough to prove that w; < v; for every ¢ = 1,..., k, because then we
can embed Z/p“i7Z = p¥iT Vil /pVil C 7 /pViZ for each i. Suppose by contradiction that
this does not hold, with w; > v; for some maximal j, so that v; < w; < wjr1 < vjy.
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Then

k k
PG = D B/p" T and pUi K = P /"L,
i=j+1 i=j

so that the minimal number of generators of p¥ G is strictly smaller than k — j, while
the minimal number of generators of p¥i K is precisely k — j. But p"" K = p% (G/H) =
(p""GH)/H = (p*"G)/(p¥"G N H) by Exercise 2 from Exercise sheet 4, so that p¥i K
is a quotient of p"iG, contradiction (as generators of the latter are mapped by the
quotient map to generators of the former).



