
D-MATH Algebra I HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 10

The content of the marked exercises (*) should be known for the exam.

1. (*) (Characterization of gcd and lcm in terms of principle ideals). Let A be a PID and
take two non-zero elements a, b ∈ A. Show:

1. aA+ bA = dA, where d is a greatest common divisor of (a, b) in the sense that

a) d|a and d|b, and

b) for all d′ ∈ A s.t. d′|a and d′|b, we have d′|d.

2. aA ∩ bA = mA, where m is a least common multiple of (a, b) in the sense that

a) a|m and b|m, and

b) for all m′ ∈ A s.t. a|m′ and b|m′, we have m|m′.
3. In the factorial ring A = C[X,Y ] there are elements a and b which are irreducible,

with aA 6= bA, but for which aA+ bA 6= A.

Solution:

1. Being A a PID, there exists d ∈ A such that dA = aA + bA. Then we have
that a, b ∈ dA, which means that d|a and d|b, proving property (a). Moreover,
for d′ ∈ A a divisor of both a and b, we have a, b ∈ d′A, which implies that
dA = aA + bA ⊆ d′A, so that in particular d ∈ d′A, meaning that d′|d, which
proves (b).

2. Again A is a PID and there exists m ∈ A such that mA = aA∩ bA. Then m ∈ aA
and m ∈ bA, so that a|m and b|m, proving (a). For (b), suppose that m′ is a
multiple of both a and b. Then m′ ∈ aA ∩ bA = mA, so that m|m′, which proves
(b).

3. Let a = X and b = Y . Then a is irreducible, since for any factorization X = fg,
we have that f and g are constant in Y and one of them has to be constant in
X, so that f or g is a unit. Similarly, one can prove that b is irreducible. Since
X 6∈ Y ·A (by reasoning on the degree in Y ), we have aA 6= bA. But aA+bA is not
a principal ideal (as we proved in Exercise sheet 8, Exercise 4), and in particular
it differs from A.

2. Let A be a factorial ring.
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1. Suppose that a ∈ A\A×, a 6= 0, with a =
∏k
i=1 r

ni
i for some k, ni ∈ Z>0 and some

irreducible elements ri ∈ A such that riA 6= rjA for i 6= j. Prove that for every
b ∈ A, we have that b divides a if and only if we can write

b = u

k∏
i=1

rmi
i , for some u ∈ A× and 0 ≤ mi ≤ ni for all i.

2. Let A be a PID, and a, b ∈ A elements of the form a =
∏k
i=1 r

ni
i and b =

∏l
j=1 s

mj

j ,
where ri, sj ∈ A are all irreducible elements, k, l,mi, nj ∈ Z>0, and riA 6= ri′A for
i 6= i′ and sjA 6= sj′A for j 6= j′. Prove that a gcd (defined as in Exercise 1) of a
and b is

d =

f∏
h=1

qlhh ,

where

• {q1, . . . , qf} is a finite subset of irreducible elements of A,

• qαA 6= qβA for α 6= β,

• ∀h ∈ {1, . . . , f}, there exist i, j such that qhA = riA = sjA and lh =
min(mi, nj).

Solution:

1. The “if” part is easy: for b of the given form, we have that

a =
k∏
i=1

rni
i = u

( k∏
i=1

rmi
i

)
u−1

k∏
i=1

rni−mi
i = bu−1

k∏
i=1

rni−mi
i ,

so that b|a.

Conversely, assume that b|a, and write a = bc for some c ∈ A. As A is a UFD,
b and c both have a decomposition into irreducible elements, b =

∏
h∈H sh and

c =
∏
j∈J qj . Multiplying those two decompositions together we obtain a decompo-

sition into irreducibles for a. Then, again because A is a UFD, there is a bijection
of indexes γ : H t J →

⋃r
i=1

⊔ni
α=1{i} such that each sh or qj is equivalent to the

corresponding ri (that is, they are equal up to multiplying by a unit). In particu-
lar, we have that for each h ∈ H there exists uh ∈ A× such that sh = uhrγ(h), and
as γ is a bijection, for each i ∈ I we have that 0 ≤ mi := |{h ∈ H : i = γ(h)}| ≤ ni.
So we can conclude that

b =
∏
h∈H

sh =
∏
h∈H

uhrγ(h) = u

k∏
i=1

rmi
i ,

where u =
∏
h∈H uh.
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2. Now let a =
∏k
i=1 r

ni
i and b =

∏l
j=1 s

mj

j , and let d be a greatest common divisor
of them. Then d|a and d|b, so that applying previous point twice, we can write,
for some u, v ∈ A× and some integers 0 ≤ λi ≤ ni and 0 ≤ µj ≤ mj ,

u

k∏
i=1

rλii = d = v

l∏
j=1

s
µj
j .

Then, as A is a UFD, and using the hypothesis that the ri’s (resp., the sj ’s) are
pairwise non-equivalent, we get a bijection

ϑ : I ′ := {i : λi 6= 0} → J ′ := {j : µj 6= 0},

such that sϑ(i) = wiri and µϑ(i) = λi for all i ∈ I ′, where wi ∈ A×. Notice that λi =
µϑ(i) ≤ ni,mϑ(i) for each i ∈ I ′, but that if such an inequality is strict for both ni
and mϑ(i), then by multiplying ri ·d would still divide both a and b, contradicting
maximality of d (as rid - d, since ri 6∈ A×). Hence λi = µϑ(i) = min(ni,mϑ(i)).
The statement is proven by “renaming” some indexes and elements:

Take f := |I ′|, H = {1, . . . , f} fix a bijection ξ : H → I ′. Then define, for all
h ∈ H, qt = rξ(h). Those are clearly irreducible pairwise non-equivalent elements
of A. The last of the three conditions is finally satisfied by taking i = ξ(h) and
j = ϑ(ξ(h)) for each h ∈ H.

3. (*) (Another formulation of the classification of finitely generated torsion modules)
Let A be a PID and M 6= 0 a finitely generated torsion module. Show that there exists
k ≥ 1 and elements a1|a2| · · · |ak ∈ A such that ai 6= 0, ai 6∈ A× for all i and

M ∼= A/a1A⊕ · · · ⊕A/akA.

[Hint: Use the classification you have seen in class and the Chinese Remainder Theo-
rem]

Solution:

By classification for finitely generated torsion modules over a PID, we have that there
exist finitely many (pairwise non-equivalent) irreducible elements p1, . . . , pm ∈ A such
that M ∼=

⊕m
i=1M(pi) (taking only the irreducible elements p such that M(p) 6= 0,

which can be proven to be finitely many), and for each i there exist a positive integer
si and positive integers νi,1 ≤ · · · ≤ νi,si such that

M(pi) ∼=
si⊕
j=1

A/p
νi,j
i A.

Let now k = maxi(si). We add some zeroes in the beginning of the sequences of
exponents (νi,1, . . . , νi,si) in order to make them all of length k. More precisely, we
define, for 1 ≤ i ≤ m and 1 ≤ j ≤ k,

vij =

{
0 if j ≤ k − si
νi,j−(k−si) if j > k − si
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Then clearly we have that vi,j ≤ vi,j+1, for each i and j for which the two sides are
defined, so that p

vi,j
i |p

vi,j+1

i . Moreover, as p0i = 1 for each i and A/1A = 0, we have
that

M(pi) ∼=
si⊕
j=1

A/p
νi,j
i A ∼=

k⊕
j=1

A/p
vi,j
i A.

Next, define aj =
∏m
i=1 p

vi,j
i for 1 ≤ j ≤ k and notice that aj |aj+1 for 1 ≤ j ≤ k − 1,

with aj 6= 0 for each j as it is a product of irreducible elements. Furthermore, a1 6∈ A×
(so that non of the aj is a unit being divisible by a1), since by maximality of k we have
that vi1 6= 0 for some i, for which then pi|a1. The aj satisfy the desired divisibility
property, and we are done if we prove the required isomorphism. We have

M ∼=
m⊕
i=1

k⊕
j=1

A/p
vi,j
i A
∼=

k⊕
j=1

m⊕
i=1

A/p
vi,j
i A
∼=

k⊕
j=1

A/ajA,

where the last isomorphism is obtained by applying Chinese Remainder Theorem,
which can be done since the pi are pairwise non-equivalent, so that the p

vi,j
i are pairwise

coprime.

4. Let G be a finite abelian group generated by two elements.

1. Show that
G ∼= Z/d1Z⊕ Z/d1d2Z,

where d1, d2 ≥ 1 are integers.

2. For every prime p, determine G(p).

Solution:

1. Let G = 〈a, b〉, α = ordG(a) and β = ordG(b). By the classification theorem
for modules over a PID (which can be applied since Z is a PID), we have that
G ∼=

⊕
G(p), asG is torsion, where the sum ranges on positive prime numbers, and

G(p) = 0 for almost all p. Then for each prime p we have a canonical projection
πp : G→ G(p), and G(p) is generated by πp(a) and πp(b). Still by the classification
theorem for finitely generated modules, we can then write, for each p,

G(p) = Z/pupZ⊕ Z/pvpZ,

with up ≤ vp, and vp 6= 0 for only finitely many primes p. Then using the same
argument of the previous exercise (with M = G, R = Z and k = 2), we obtain
that G ∼= Z/a1Z⊕Z/a2Z, with a1|a2 (those two numbers are equal, respectively,
to the products

∏
p p

up and
∏
p p

vp). Choosing d1 = a1 and d2 = a2/a1 we obtain

G = Z/d1Z⊕ Z/d1d2Z,

as desired.
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2. By construction, for each prime p we have that G(p) = Z/pupZ⊕ Z/pvpZ, where
up and vp are the exponents with which p appears in the factorization into primes
of the numbers d1 and d1d2, respectively. In particular, G(p) = 0 if and only if
p - d1 and p - d2. Moreover, G(p) is cyclic of order pk if and only if p - d1 and
pk||d2 (i.e., pk|d2 but pk+1 - d2). The only other possibility is that p|d1 and p|d2.
in which case G(p) is not cyclic.

5. Let G be a finite abelian group and H be a subgroup of G. Prove: there exists a
subgroup H ′ ≤ G such that H ′ ∼= G/H. [Hint: Abelian groups are Z-modules]

Solution:

By the classification theorem for modules over a PID (which can be applied since Z
is a PID), we have that there exists finitely many (eventually zero) positive prime
numbers p1, . . . , pm such that G =

⊕m
i=1G(pi) and G(pi) 6= 0. Now we claim that

for any subgroup H ≤ G we have H(pi) ≤ G(pi). This will allow us to restrict our
attention to p-groups, as a direct sum of quotients over coprime subgroups can be seen
as a quotient by the Chinese Remainder Theorem.

To prove the claim, it is enough to check that if A1, A2 and C are abelian groups
with C = A1 ⊕ A2, with a1 = |A1| and a2 = |A2| coprime numbers, then for every
subgroup D ≤ C we have D = p1(D) ⊕ p2(D), where the maps pi : C → Ai are the
canonical projection. Indeed, we have by definition of direct sum the inclusion “⊆”.
Moreover, we have D = α1α2 for some uniquely determined αi|ai (as a1 and a2 are
coprime). Also, pi(D) ≤ Ai, so that by Lagrange’s Theorem |pi(D)| divides ai, but
it also divides |D| (easily seen via the map pi), so that |pi(D)| has to divide αi, and
|p1(D) ⊕ p2(D)| = |p1(D)| · |p2(D)| ≤ α1α2 = |D|, which together with the previous
inclusion gives equality.

Hence without loss of generality we can assume that G = G(p) for some prime number
p, that is, G is an abelian p-group. Then H ≤ G is also an abelian p-group, and so is
K := G/H. Then the classification of finitely generated torsion module allows us to
write down G and K as finite direct sums of cyclic groups of order equal to a prime
power, and we know that the number of direct summands in this decomposition is
equal to the minimal number of generators of the group. Since generators of G are
mapped via the quotient map p : G → K to generators of K, we have some integers
1 ≤ k, 1 ≤ v1 ≤ · · · ≤ vk and 0 ≤ w1 ≤ · · · ≤ wk such that

G ∼=
k⊕
i=1

Z/pviZ and K ∼=
k⊕
i=1

Z/pwiZ.

To conclude, it is enough to prove that wi ≤ vi for every i = 1, . . . , k, because then we
can embed Z/pwiZ ∼= pvi−wiZ/pviZ ⊆ Z/pviZ for each i. Suppose by contradiction that
this does not hold, with wj > vj for some maximal j, so that vj < wj ≤ wj+1 ≤ vj+1.
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Then

pvjG ∼=
k⊕

i=j+1

Z/pvi−vjZ and pvjK ∼=
k⊕
i=j

Z/pwi−vjZ,

so that the minimal number of generators of pvjG is strictly smaller than k − j, while
the minimal number of generators of pvjK is precisely k− j. But pvjK = pvj (G/H) =
(pvjGH)/H = (pvjG)/(pvjG ∩ H) by Exercise 2 from Exercise sheet 4, so that pvjK
is a quotient of pvjG, contradiction (as generators of the latter are mapped by the
quotient map to generators of the former).


