Solutions of exercise sheet 10

The content of the marked exercises (*) should be known for the exam.

1. (*) (Characterization of gcd and lcm in terms of principle ideals). Let A be a PID and take two non-zero elements $a, b \in A$. Show:
2. $a A+b A=d A$, where d is a greatest common divisor of (a, b) in the sense that
a) $d \mid a$ and $d \mid b$, and
b) for all $d^{\prime} \in A$ s.t. $d^{\prime} \mid a$ and $d^{\prime} \mid b$, we have $d^{\prime} \mid d$.
3. $a A \cap b A=m A$, where m is a least common multiple of (a, b) in the sense that
a) $a \mid m$ and $b \mid m$, and
b) for all $m^{\prime} \in A$ s.t. $a \mid m^{\prime}$ and $b \mid m^{\prime}$, we have $m \mid m^{\prime}$.
4. In the factorial ring $A=\mathbb{C}[X, Y]$ there are elements a and b which are irreducible, with $a A \neq b A$, but for which $a A+b A \neq A$.

Solution:

1. Being A a PID, there exists $d \in A$ such that $d A=a A+b A$. Then we have that $a, b \in d A$, which means that $d \mid a$ and $d \mid b$, proving property (a). Moreover, for $d^{\prime} \in A$ a divisor of both a and b, we have $a, b \in d^{\prime} A$, which implies that $d A=a A+b A \subseteq d^{\prime} A$, so that in particular $d \in d^{\prime} A$, meaning that $d^{\prime} \mid d$, which proves (b).
2. Again A is a PID and there exists $m \in A$ such that $m A=a A \cap b A$. Then $m \in a A$ and $m \in b A$, so that $a \mid m$ and $b \mid m$, proving (a). For (b), suppose that m^{\prime} is a multiple of both a and b. Then $m^{\prime} \in a A \cap b A=m A$, so that $m \mid m^{\prime}$, which proves (b).
3. Let $a=X$ and $b=Y$. Then a is irreducible, since for any factorization $X=f g$, we have that f and g are constant in Y and one of them has to be constant in X, so that f or g is a unit. Similarly, one can prove that b is irreducible. Since $X \notin Y \cdot A$ (by reasoning on the degree in Y), we have $a A \neq b A$. But $a A+b A$ is not a principal ideal (as we proved in Exercise sheet 8, Exercise 4), and in particular it differs from A.
4. Let A be a factorial ring.
5. Suppose that $a \in A \backslash A^{\times}, a \neq 0$, with $a=\prod_{i=1}^{k} r_{i}^{n_{i}}$ for some $k, n_{i} \in \mathbb{Z}_{>0}$ and some irreducible elements $r_{i} \in A$ such that $r_{i} A \neq r_{j} A$ for $i \neq j$. Prove that for every $b \in A$, we have that b divides a if and only if we can write

$$
b=u \prod_{i=1}^{k} r_{i}^{m_{i}}, \text { for some } u \in A^{\times} \text {and } 0 \leq m_{i} \leq n_{i} \text { for all } i .
$$

2. Let A be a PID, and $a, b \in A$ elements of the form $a=\prod_{i=1}^{k} r_{i}^{n_{i}}$ and $b=\prod_{j=1}^{l} s_{j}^{m_{j}}$, where $r_{i}, s_{j} \in A$ are all irreducible elements, $k, l, m_{i}, n_{j} \in \mathbb{Z}_{>0}$, and $r_{i} A \neq r_{i^{\prime}} A$ for $i \neq i^{\prime}$ and $s_{j} A \neq s_{j^{\prime}} A$ for $j \neq j^{\prime}$. Prove that a gcd (defined as in Exercise 1) of a and b is

$$
d=\prod_{h=1}^{f} q_{h}^{l_{h}}
$$

where

- $\left\{q_{1}, \ldots, q_{f}\right\}$ is a finite subset of irreducible elements of A,
- $q_{\alpha} A \neq q_{\beta} A$ for $\alpha \neq \beta$,
- $\forall h \in\{1, \ldots, f\}$, there exist i, j such that $q_{h} A=r_{i} A=s_{j} A$ and $l_{h}=$ $\min \left(m_{i}, n_{j}\right)$.

Solution:

1. The "if" part is easy: for b of the given form, we have that

$$
a=\prod_{i=1}^{k} r_{i}^{n_{i}}=u\left(\prod_{i=1}^{k} r_{i}^{m_{i}}\right) u^{-1} \prod_{i=1}^{k} r_{i}^{n_{i}-m_{i}}=b u^{-1} \prod_{i=1}^{k} r_{i}^{n_{i}-m_{i}},
$$

so that $b \mid a$.
Conversely, assume that $b \mid a$, and write $a=b c$ for some $c \in A$. As A is a UFD, b and c both have a decomposition into irreducible elements, $b=\prod_{h \in H} s_{h}$ and $c=\prod_{j \in J} q_{j}$. Multiplying those two decompositions together we obtain a decomposition into irreducibles for a. Then, again because A is a UFD, there is a bijection of indexes $\gamma: H \sqcup J \rightarrow \bigcup_{i=1}^{r} \bigsqcup_{\alpha=1}^{n_{i}}\{i\}$ such that each s_{h} or q_{j} is equivalent to the corresponding r_{i} (that is, they are equal up to multiplying by a unit). In particular, we have that for each $h \in H$ there exists $u_{h} \in A^{\times}$such that $s_{h}=u_{h} r_{\gamma(h)}$, and as γ is a bijection, for each $i \in I$ we have that $0 \leq m_{i}:=|\{h \in H: i=\gamma(h)\}| \leq n_{i}$. So we can conclude that

$$
b=\prod_{h \in H} s_{h}=\prod_{h \in H} u_{h} r_{\gamma(h)}=u \prod_{i=1}^{k} r_{i}^{m_{i}},
$$

where $u=\prod_{h \in H} u_{h}$.
2. Now let $a=\prod_{i=1}^{k} r_{i}^{n_{i}}$ and $b=\prod_{j=1}^{l} s_{j}^{m_{j}}$, and let d be a greatest common divisor of them. Then $d \mid a$ and $d \mid b$, so that applying previous point twice, we can write, for some $u, v \in A^{\times}$and some integers $0 \leq \lambda_{i} \leq n_{i}$ and $0 \leq \mu_{j} \leq m_{j}$,

$$
u \prod_{i=1}^{k} r_{i}^{\lambda_{i}}=d=v \prod_{j=1}^{l} s_{j}^{\mu_{j}}
$$

Then, as A is a UFD, and using the hypothesis that the r_{i} 's (resp., the s_{j} 's) are pairwise non-equivalent, we get a bijection

$$
\vartheta: I^{\prime}:=\left\{i: \lambda_{i} \neq 0\right\} \rightarrow J^{\prime}:=\left\{j: \mu_{j} \neq 0\right\},
$$

such that $s_{\vartheta(i)}=w_{i} r_{i}$ and $\mu_{\vartheta(i)}=\lambda_{i}$ for all $i \in I^{\prime}$, where $w_{i} \in A^{\times}$. Notice that $\lambda_{i}=$ $\mu_{\vartheta(i)} \leq n_{i}, m_{\vartheta(i)}$ for each $i \in I^{\prime}$, but that if such an inequality is strict for both n_{i} and $m_{\vartheta}(i)$, then by multiplying $r_{i} \cdot d$ would still divide both a and b, contradicting maximality of d (as $r_{i} d \nmid d$, since $r_{i} \notin A^{\times}$). Hence $\lambda_{i}=\mu_{\vartheta(i)}=\min \left(n_{i}, m_{\vartheta(i)}\right)$. The statement is proven by "renaming" some indexes and elements:
Take $f:=\left|I^{\prime}\right|, H=\{1, \ldots, f\}$ fix a bijection $\xi: H \rightarrow I^{\prime}$. Then define, for all $h \in H, q_{t}=r_{\xi(h)}$. Those are clearly irreducible pairwise non-equivalent elements of A. The last of the three conditions is finally satisfied by taking $i=\xi(h)$ and $j=\vartheta(\xi(h))$ for each $h \in H$.
3. (*) (Another formulation of the classification of finitely generated torsion modules) Let A be a PID and $M \neq 0$ a finitely generated torsion module. Show that there exists $k \geq 1$ and elements $a_{1}\left|a_{2}\right| \cdots \mid a_{k} \in A$ such that $a_{i} \neq 0, a_{i} \notin A^{\times}$for all i and

$$
M \cong A / a_{1} A \oplus \cdots \oplus A / a_{k} A
$$

[Hint: Use the classification you have seen in class and the Chinese Remainder Theorem]

Solution:

By classification for finitely generated torsion modules over a PID, we have that there exist finitely many (pairwise non-equivalent) irreducible elements $p_{1}, \ldots, p_{m} \in A$ such that $M \cong \bigoplus_{i=1}^{m} M\left(p_{i}\right)$ (taking only the irreducible elements p such that $M(p) \neq 0$, which can be proven to be finitely many), and for each i there exist a positive integer s_{i} and positive integers $\nu_{i, 1} \leq \cdots \leq \nu_{i, s_{i}}$ such that

$$
M\left(p_{i}\right) \cong \bigoplus_{j=1}^{s_{i}} A / p_{i}^{\nu_{i, j}} A
$$

Let now $k=\max _{i}\left(s_{i}\right)$. We add some zeroes in the beginning of the sequences of exponents $\left(\nu_{i, 1}, \ldots, \nu_{i, s_{i}}\right)$ in order to make them all of length k. More precisely, we define, for $1 \leq i \leq m$ and $1 \leq j \leq k$,

$$
v_{i j}= \begin{cases}0 & \text { if } j \leq k-s_{i} \\ \nu_{i, j-\left(k-s_{i}\right)} & \text { if } j>k-s_{i}\end{cases}
$$

Then clearly we have that $v_{i, j} \leq v_{i, j+1}$, for each i and j for which the two sides are defined, so that $p_{i}^{v_{i, j}} \mid p_{i}^{v_{i, j+1}}$. Moreover, as $p_{i}^{0}=1$ for each i and $A / 1 A=0$, we have that

$$
M\left(p_{i}\right) \cong \bigoplus_{j=1}^{s_{i}} A / p_{i}^{\nu_{i, j}} A \cong \bigoplus_{j=1}^{k} A / p_{i}^{v_{i, j}} A
$$

Next, define $a_{j}=\prod_{i=1}^{m} p_{i}^{v_{i, j}}$ for $1 \leq j \leq k$ and notice that $a_{j} \mid a_{j+1}$ for $1 \leq j \leq k-1$, with $a_{j} \neq 0$ for each j as it is a product of irreducible elements. Furthermore, $a_{1} \notin A^{\times}$ (so that non of the a_{j} is a unit being divisible by a_{1}), since by maximality of k we have that $v_{i 1} \neq 0$ for some i, for which then $p_{i} \mid a_{1}$. The a_{j} satisfy the desired divisibility property, and we are done if we prove the required isomorphism. We have

$$
M \cong \bigoplus_{i=1}^{m} \bigoplus_{j=1}^{k} A / p_{i}^{v_{i, j}} A \cong \bigoplus_{j=1}^{k} \bigoplus_{i=1}^{m} A / p_{i}^{v_{i, j}} A \cong \bigoplus_{j=1}^{k} A / a_{j} A,
$$

where the last isomorphism is obtained by applying Chinese Remainder Theorem, which can be done since the p_{i} are pairwise non-equivalent, so that the $p_{i}^{v_{i, j}}$ are pairwise coprime.
4. Let G be a finite abelian group generated by two elements.

1. Show that

$$
G \cong \mathbb{Z} / d_{1} \mathbb{Z} \oplus \mathbb{Z} / d_{1} d_{2} \mathbb{Z}
$$

where $d_{1}, d_{2} \geq 1$ are integers.
2. For every prime p, determine $G(p)$.

Solution:

1. Let $G=\langle a, b\rangle, \alpha=\operatorname{ord}_{G}(a)$ and $\beta=\operatorname{ord}_{G}(b)$. By the classification theorem for modules over a PID (which can be applied since \mathbb{Z} is a PID), we have that $G \cong \bigoplus G(p)$, as G is torsion, where the sum ranges on positive prime numbers, and $G(p)=0$ for almost all p. Then for each prime p we have a canonical projection $\pi_{p}: G \rightarrow G(p)$, and $G(p)$ is generated by $\pi_{p}(a)$ and $\pi_{p}(b)$. Still by the classification theorem for finitely generated modules, we can then write, for each p,

$$
G(p)=\mathbb{Z} / p^{u_{p}} \mathbb{Z} \oplus \mathbb{Z} / p^{v_{p}} \mathbb{Z}
$$

with $u_{p} \leq v_{p}$, and $v_{p} \neq 0$ for only finitely many primes p. Then using the same argument of the previous exercise (with $M=G, R=\mathbb{Z}$ and $k=2$), we obtain that $G \cong \mathbb{Z} / a_{1} \mathbb{Z} \oplus \mathbb{Z} / a_{2} \mathbb{Z}$, with $a_{1} \mid a_{2}$ (those two numbers are equal, respectively, to the products $\prod_{p} p^{u_{p}}$ and $\left.\prod_{p} p^{v_{p}}\right)$. Choosing $d_{1}=a_{1}$ and $d_{2}=a_{2} / a_{1}$ we obtain

$$
G=\mathbb{Z} / d_{1} \mathbb{Z} \oplus \mathbb{Z} / d_{1} d_{2} \mathbb{Z},
$$

as desired.
2. By construction, for each prime p we have that $G(p)=\mathbb{Z} / p^{u_{p}} \mathbb{Z} \oplus \mathbb{Z} / p^{v_{p}} \mathbb{Z}$, where u_{p} and v_{p} are the exponents with which p appears in the factorization into primes of the numbers d_{1} and $d_{1} d_{2}$, respectively. In particular, $G(p)=0$ if and only if $p \nmid d_{1}$ and $p \nmid d_{2}$. Moreover, $G(p)$ is cyclic of order p^{k} if and only if $p \nmid d_{1}$ and $p^{k}| | d_{2}$ (i.e., $p^{k} \mid d_{2}$ but $p^{k+1} \nmid d_{2}$). The only other possibility is that $p \mid d_{1}$ and $p \mid d_{2}$. in which case $G(p)$ is not cyclic.
5. Let G be a finite abelian group and H be a subgroup of G. Prove: there exists a subgroup $H^{\prime} \leq G$ such that $H^{\prime} \cong G / H$. [Hint: Abelian groups are \mathbb{Z}-modules]

Solution:

By the classification theorem for modules over a PID (which can be applied since \mathbb{Z} is a PID), we have that there exists finitely many (eventually zero) positive prime numbers p_{1}, \ldots, p_{m} such that $G=\bigoplus_{i=1}^{m} G\left(p_{i}\right)$ and $G\left(p_{i}\right) \neq 0$. Now we claim that for any subgroup $H \leq G$ we have $H\left(p_{i}\right) \leq G\left(p_{i}\right)$. This will allow us to restrict our attention to p-groups, as a direct sum of quotients over coprime subgroups can be seen as a quotient by the Chinese Remainder Theorem.

To prove the claim, it is enough to check that if A_{1}, A_{2} and C are abelian groups with $C=A_{1} \oplus A_{2}$, with $a_{1}=\left|A_{1}\right|$ and $a_{2}=\left|A_{2}\right|$ coprime numbers, then for every subgroup $D \leq C$ we have $D=p_{1}(D) \oplus p_{2}(D)$, where the maps $p_{i}: C \rightarrow A_{i}$ are the canonical projection. Indeed, we have by definition of direct sum the inclusion " \subseteq ". Moreover, we have $D=\alpha_{1} \alpha_{2}$ for some uniquely determined $\alpha_{i} \mid a_{i}$ (as a_{1} and a_{2} are coprime). Also, $p_{i}(D) \leq A_{i}$, so that by Lagrange's Theorem $\left|p_{i}(D)\right|$ divides a_{i}, but it also divides $|D|$ (easily seen via the map p_{i}), so that $\left|p_{i}(D)\right|$ has to divide α_{i}, and $\left|p_{1}(D) \oplus p_{2}(D)\right|=\left|p_{1}(D)\right| \cdot\left|p_{2}(D)\right| \leq \alpha_{1} \alpha_{2}=|D|$, which together with the previous inclusion gives equality.

Hence without loss of generality we can assume that $G=G(p)$ for some prime number p, that is, G is an abelian p-group. Then $H \leq G$ is also an abelian p-group, and so is $K:=G / H$. Then the classification of finitely generated torsion module allows us to write down G and K as finite direct sums of cyclic groups of order equal to a prime power, and we know that the number of direct summands in this decomposition is equal to the minimal number of generators of the group. Since generators of G are mapped via the quotient map $p: G \rightarrow K$ to generators of K, we have some integers $1 \leq k, 1 \leq v_{1} \leq \cdots \leq v_{k}$ and $0 \leq w_{1} \leq \cdots \leq w_{k}$ such that

$$
G \cong \bigoplus_{i=1}^{k} \mathbb{Z} / p^{v_{i}} \mathbb{Z} \text { and } K \cong \bigoplus_{i=1}^{k} \mathbb{Z} / p^{w_{i}} \mathbb{Z}
$$

To conclude, it is enough to prove that $w_{i} \leq v_{i}$ for every $i=1, \ldots, k$, because then we can embed $\mathbb{Z} / p^{w_{i}} \mathbb{Z} \cong p^{v_{i}-w_{i}} \mathbb{Z} / p^{v_{i}} \mathbb{Z} \subseteq \mathbb{Z} / p^{v_{i}} \mathbb{Z}$ for each i. Suppose by contradiction that this does not hold, with $w_{j}>v_{j}$ for some maximal j, so that $v_{j}<w_{j} \leq w_{j+1} \leq v_{j+1}$.

Then

$$
p^{v_{j}} G \cong \bigoplus_{i=j+1}^{k} \mathbb{Z} / p^{v_{i}-v_{j}} \mathbb{Z} \text { and } p^{v_{j}} K \cong \bigoplus_{i=j}^{k} \mathbb{Z} / p^{w_{i}-v_{j}} \mathbb{Z}
$$

so that the minimal number of generators of $p^{v_{j}} G$ is strictly smaller than $k-j$, while the minimal number of generators of $p^{v_{j}} K$ is precisely $k-j$. But $p^{v_{j}} K=p^{v_{j}}(G / H)=$ $\left(p^{v_{j}} G H\right) / H=\left(p^{v_{j}} G\right) /\left(p^{v_{j}} G \cap H\right)$ by Exercise 2 from Exercise sheet 4, so that $p^{v_{j}} K$ is a quotient of $p^{v_{j}} G$, contradiction (as generators of the latter are mapped by the quotient map to generators of the former).

