D-MATH Algebra 1 HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 12

The content of the marked exercises (*) should be known for the exam.

1. (*) Let p be a prime number and n a positive integer. For each element z € Fpn, we
define its trace and norm over IF,, as

n—1 n—1
Tr(z) = prj and N(z) = H z?
=0 =0

Check the following properties:

e For each = € Fyn, both Tr(z) and N(z) lie in F;
e The map Tr : Fyn — IF, is IF)-linear;

e The map N : F,» — [F, is multiplicative (i.e, N(zy) = N(z)N(y)), and N(z) = 0
if and only if z = 0.

[Actually, these definitions of trace and norm agree with the more general ones we gave
in Exercise 3 from Exercise sheet 11].

Solution:

e As seen in class, for a € [Fyn, we have that o € I, if and only if o” = a. Hence
we only need to show that the trace and the norm of x € IF» do not change under
taking the p-th power. We know that z — 2P is an endomorphism of F,» (called
the Frobenius endomorphism), so that it respects sums, and

n—1 n—1 n—1 n—1
(Tr(z))? = v - Z (pr)p — ( pﬂ“) — ( p7“> —
=0 =0 i=0 =0
n n—1
= (:L’pj) = (iL'pJ = Tr(x),
7j=1 7=0

where we have used the fact that #?" = z since x € Fyn. Hence Tr(z) € F, for
each x € Fp». The same computation with a product instead of a sum gives that
N(z)? = N(z) for x € Fyn, so that N(z) € ).
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e By definition, we have that Tr = Z}:& ¢’, where ¢ : Fyn — Fyn is the Frobenius
field endomorphism sending z + xP, and 7 is its j-th iteration. Since ¢ fixes I,
and respects multiplication, it is an IF,-linear map. Thus Tr is also IF,-linear, as it
is a sum of compositions of IFp-linear maps F, — I, (for j = 0, ¢©¥ is the identity

of Fpyn, which is also IF)-linear).

e For z,y € '), we have

n—1 ‘ n—1 o n—1 n—1
J Jpd J
N(zy) = [[@y)? =[] ="'y =[] =" [[v" = N@)N(),
=0 j=0 j=0  j=0

so that N is a multiplicative map. Moreover, since for € F,» one has N(z) =

2Zi=0 7 and Fpn is a field (and hence an integral domain), we have that N(z) =0
if and only if x = 0.

2. For K a field and n a positive integer, we define GL, (K) to be the multiplicative group
of invertible square matrices of order n with coefficients in K. It is isomorphic to the
automorphism group of the K-vector space K".

1. For K a finite field of g elements, prove that the cardinality of GL,,(K) is

n—1

| GLn(K)| = [ ] (¢" — &)

J=0

2. For |K| = q as before, and g = p" for some prime p and positive integer r, show
that a p-Sylow subgroup of GL,(K) is given by the group of upper triangular
matrices with one on the diagonal,

1 a1,2 e al,n
R :
Hn(K) = 0 ‘ ' 1ai5 € K
: ’ T Qp—1n
0 0 1

Solution:

1. By basic linear algebra, we have that a matrix A € M, (K) is invertible if and
only if its columns, interpreted as vectors in K™, are linearly independent. Hence
|GL,(K)| is the number of ordered n-tuples of K-linearly independent vectors in
K™. This can be found inductively by counting the number N of ordered k-tuples
of K-linearly independent vectors in K™, for 0 < k < n. We claim that

k—1
Nk’ = H(qn - qj)a

j=0

which for k& = n gives indeed the desired cardinality.
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We prove the claim N, = szl(q” ¢’) by induction on 0 < k < n. For k = 0, we

have H =0 (q —¢’) = 1 (the empty product), and there is indeed one 0-tuple of K-
linearly independent vectors, that is, the empty tuple. If this does not satisfy the

reader, they can notice that Ny = |K"| = ¢", which coincides with H (q" —q¢’).

To conclude, suppose that N_; = Hk_Q(q

_ ¢’). Now we have that each k-tuple
of K-linear independent vectors consists of one of the Ny_; (k — 1)-tuple of K-
linear independent vectors, followed by a vector which does not lie in the span
of the previous k£ — 1 vectors. Since k — 1 linearly independent vectors span over

K precisely ¢! vectors, while | K™| = ¢", the k-th vector can be chosen among

n

(¢" — ¢*~1), and we obtain
k—1 '
N = Np1(q" =" ) =[] (@ = &),
=0

proving the inductive step.

2. From the previous point, we have

| GLy (K)| = 43 H

where the product is not divisible by p (as p is prime and none of the factor is

divisible by p, since they are congruent to —1 modulo p), while q(g) has p as
unique prime factor. Hence a p-Sylow subgroup of GL, (K) contains precisely
q(g) elements. The given set H, (K) consists of invertible matrices (as they have
determinant 1), and its cardinality is ¢!, where [ is the number of elements in
the upper triangle which do not lie in the principal diagonal. We obtain that
I =(n*—=n)/2=(}), so that H,(K) has the cardinality of a p-Sylow subgroup of
GL,(K). To conclude, we just notice that H,(K) is indeed a subgroup of GL,,(K).
This is because the determinant of its matrices is always 1, so that for A € H,,(K)
we have that A~! is the transpose of the matrix of cofactors. Since the cofactor
matrix is easily seen to be lower-triangular with 1 in the diagonal, we can conclude
that A~! is still in H,(K). Moreover, H,(K) is closed by multiplication, as one
can immediately check with the formulas for the coefficients of the product of two
matrices.

3. Let G be a finite group and V,W C G subsets such that |V| + |W| > |G|. Prove:
G = VW. [Hint: For g € G, the sets V and gIW ™! need to intersect.]

Solution:

Fix g € G. We want to prove that ¢ = vw, for some v € V and w € W. Since the map
G — G sending z +— go~! is a bijection (whose inverse is indeed y ~— y~1g), we have
that [gW ! = |W]. Now

Gl <V + g7 W= [VUgW T+ |[VngW [ < |G+ |V NngW™!|,
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which implies that V N gW~! # @. Then there exists v € V such that v = gw~! for
some w € W, which gives g = vw.

4. Let F be a finite field. We say that x € F' is a square in F' if there exists y € F' such
that y? = .

1. Suppose that char(F') = 2. Prove that every element of F is a square in F'.
2. Now suppose that char(F) = p > 3. Let

S={acF|IBecF:a=0}and S =5\ {0}

Prove:
e S’ is a subgroup of index 2 of F'* [Hint: the map x — 22 of F* is not injective];
e 2-|S| > |F|.
3. Deduce that for every finite field F, every element in F' can be expressed as the
sum of two squares in F. [Hint: Previous exercise.]

4. Let F' =T, with p > 3. Prove that —1 € IV}, is a square in I, if and only if p =1
(mod 4).

Solution:

In the following, we will denote by « the map F — F sending = +— 22. This is a
multiplicative map (as F' is a commutative ring) sending 0 — 0 and 1 +— 1.

1. If char(F) = 2, we have that o : # ~ 22 is a field endomorphism of F, as for
z,y € F we have (z +y)? = 22 + 9% + 22y = 22 + y%. Then « is injective because
it has trivial kernel (22 = 0 if and only if z = 0, as F is a field), and being F finite
a needs to be surjective as well. In conclusion, Im(«) = F', that is, every element
in F'is a square in F.

2. e The map o := a|px is a group endomorphism of F*, so that S’ = Im(ca/) is a
subgroup of F*, whose index coincides with | ker(a/)| by the First Isomorphism
Theorem for groups. We have that ker(a') is the set of roots in F of the
polynomial X2 — 1 = (X — 1)(X + 1), that is, ker(a/) = {#1}, so that, 1 and
—1 being distinct when char(F) # 2, we have [F* : S'] = |ker(d/)| = 2.

e By definition, |S| = |S’|+1. Moreover, we have just proven that |S'| = 3| F*| =
$(|F| — 1). Putting everything together, we can conclude that

2-18|=2-15|+2=|F|-1+2>|F|.

3. As fields of characteristic zero contain a copy of Frac(Z) = Q, all finite fields have
positive characteristic. If char(F) = 2, part 1 proves that every element in F' is a
square, and in particular every element is a sum of two squares. If char(F') > 3,
using the notation of part 2 we need to prove that S + .S = F. This follows
immediately from the previous exercise, by taking the additive group F' and the
subsets V. =W = S, so that |S| + |S| > |F| as we proved.
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4. Let I' =T, and let us denote by F %2 the set of invertible squares in F. As seen
in class, we have that for each a € I, one has a” = a, so that for each a € F*
one has a?~! = 1. This means that F* is the set of roots of the polynomial
fp(X) = XP~! — 1. This polynomials factors (since 2|p — 1) as

fp(X) = (X7 —1)(X"T +1).
Suppose that ¢ € F*2, with ¢ = b and b # 0. Then
C% = bpil = ]_’

so that ¢ is a root of the factor (XPT_1 —1). By point 2, we have that |[F*?| =
(p —1)/2, and this implies that the for each a € F* one has

p—1
aeF*? «— a2z =1,

ad F*? — a7 = 1.

Now we apply this for a = —1. We have that p is odd, so that we can write
-1

p=2k+ 1. Then p%l = k. If k is even, then (—=1)"Z =1, so that —1 is a square

in F. If k is odd, then (—1)*¥ = —1, so that —1 is not a square in F. Since k is
even if and only if p =1 (mod 4), we can conclude that, for p > 3, —1 is a square
in I}, if and only if p =1 (mod 4).



