D-MATH Algebra 1 HS 13
Prof. Emmanuel Kowalski

Solutions of exercise sheet 13

The content of the marked exercises (*) should be known for the exam.

1. 1. Show that the polynomial
P=X’+3X+3
is irreducible in F5[X].

2. Let a be a root of P in an algebraic closure L of 5, and 195 = F5(a). Compute
the matrix of the Frobenius automorphism ¢ : F1o5 — F195 in the basis (1, a, a?).

3. Write the element

8=

clF
1 —a 125

as an Fs-linear combination of 1, o and a?.
4. Prove that « is a generator of the cyclic group F..

Solution: In the following, we will denote elements of IF'5 just with integer numbers,
so that 5 = 0.

1. Since the polynomial P € F5[X] has degree 3, every proper decomposition of P
has a linear factor, which means that P is irreducible if and only if it has no root
in F5. Since P(0) = 3, P(1) =2, P(2) =2, P(3) = 4 and P(4) = 4, we obtain
that P has no root in IF'5, so that it is irreducible in Fj.

2. Since « is a root of P, we have

o =-30—3=2(a+1) and
(a+1)P=a+3a*+3a+1=3(%+1),

which implies in particular that

o =—a?—1.
To compute the matrix of ¢ : x — x° with respect to the basis (1, «, a?), where «
is a root of P, we write down the images of 1, a and a? as F5-linear combinations
of 1, a and a?. We get the following:

¢(1) =1
pla)=a’=a% 2 - (a+1)=2a>+2a% = -1 — a+ 2a?
p®)=a-a’=-a®—a=-2+2a
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Then the matrix associated to ¢ with respect to the basis (1, a, a?) is

1 -1 -2
My=|0 -1 2
0 2 0

3. Suppose that 3 = A+ ua + va? for A\, yu, v € F5. Then the condition 1 = 8(1 — «)
gives

I=A+(p—Na+v—-—pa?—va® =X+3v+Bv+pupu—Na+ (v—pa?,

which is equivalent to

A+3v=1
v4+pu—A=0 .
v—pu=20

Solving the equations backwards we obtain 4 = v, A = 4v and 7Tv = 1, so that the
unique solution is (X, p,v) = (2,3,3), and 8 = 2 + 3a + 3a2.

4. We have that |F{5| = 124 = 4 - 31, and by Lagrange’s theorem applied to the
subgroup («) we see that the order of « is a divisor of 124. We want to prove that
indeed ordF1x25(a) = 124, and this can be done by checking that a* and a52 both
differ from 1, since every proper divisor of 124 divides either 4 or 62. Of course,
a* = 2(a? + ) # 1, so that we are left to check that a2 # 1. We have

a62 — a*l(a9)7 — —0471(042 + 1)7‘
To proceed with the computation, notice that
(@®+1)P=a+3a"+3a> +1=4(a+1)*+a® +a+3a>+1=30° - q,
(@ +1)0=Ba?-a)=-a'-a?+a?*=—-a’+a—2and
@+ =(-?+a-2)(a*+1)=-at—a*+a®+a—-202-2=nq.
Then

a® = —ala=-1+#£1,

and we can conclude that a generates F ..

2. Let p be an odd prime number, and denote by (%) the Legendre symbol for z € ;.

1. Prove that

<x> = 2" (mod p),

p

and that this determines <%) € {£1} uniquely.

2. Prove that the map IF; — C* sending = — <%> is a group homomorphism.
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=1
P
4. Let s = (p —1)/2. Prove that

3. Prove that ( ) = 1if and only if p =1 (mod 4).

s(s+1)

sl=2%1(—=1)" 2 (mod p).

s(s+1)
2

[Hint: s! = (—1)
5. Deduce that

[T5_y(~1)7j, and —j = p — j (mod p).

5)-co

and find for which equivalence classes of p modulo 8 we have (%) =1

6. Find congruence conditions on p that are equivalent to 13 being a square modulo
p.

7. Deduce that if p = 6 (mod 13) is a prime number, then there exist only finitely
many n € Zsg such that n! +n? —n + 13 is a square in Z.

Solution:

1. As seen in class, we have that for each a € IF,, one has a” = a, so that for each
a € IF) one has aP~!' = 1. This means that I is the set of roots of the polynomial
fp(X) = XP~! — 1. This polynomials factors (since 2|p — 1) as

f(X) = (X7 —1)(X*7 +1).

Suppose that ¢ € ]F]fQ, with ¢ = b? and b # 0. Then

p—1 _
cz =l =1,

so that ¢ is a root of the factor (X e 1). As we have seen in Exercise 4.2 from
Exercise sheet 12, \F;zl = (p —1)/2, and this implies that the for each z € T}
one has

T 1

(>:1 = zeF}” — z'7 =1,
p

<$):—1 — $€]F;<2 — 7 = 1.
p

In both cases, we have that

(x) = :L‘E(mod D).

p

This of course determines uniquely the value of (%) as p is odd so that 1 # —1
in IF,.

X

»» one has

2. This follows immediately from the previous point, as for z,y € F
p—1 p—1 p—1

(ay)'7 =27 y"7
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3. Applying point 1 with x = 1, we have that (771) = 1 if and only if (p — 1)/2 is
even, and this, considering that p is odd - so that p = 1 or p = 3 (mod 4) - is
easily seen to happen precisely when p = 1 (mod 4).

4. We have
s s L3
SI—H(—DJ (1)1 = j=1JH(2k H (2k —1)) =

Notice that the factors in the two products are distinct positive even (since p is
S

odd) integers which are strictly smaller than p. There is a total of |5] + [5] =

s = (p — 1)/2 factors in the product, so that we can conclude that those factors
are the numbers 2,4,...,p — 1. Hence

st= (-1 @) = (-

J=1

S
o = (-)* 5 el
j=1

which is exactly the equivalence modulo p that we wanted to prove.

5. From the previous point we have s = (p — 1)/2 < p, and p 1 s!, so that s!
is invertible modulo p and the equivalence we proved implies (considering that

s(s+1)/2 = (p? —1)/8) that

2

1=25(-1)"%" (mod p),

which is equivalent to
2_
2° = (—1)% (mod p).
Now we apply Point 1, which gives

(§)rer

We have that (%) = 1 if and only if p28_1 = (pH)S(pfl) is even, and this happens

if and only if either p + 1 or p — 1 is divisible by 8, which is equivalent to saying
that p = £1 (mod 8). So we can write

2\ _J 1 ifp=+1modS8
p) | =1 if p=+3mod 8.
6. Of course, if p = 13 we have that 13 = 0 in IF),, which is a square. Hence we

will exclude this case. Then 13 € I/, and we want to determine (%) By the
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so that we just need to find the squares in IF13. In 13, one has
(£1)2 =1, (£2)2 =4, (£3)* = —4, (£4)?> =3, (£5)* = -1, (£6)*> = 3.

In conclusion, we have that 13 is a square if IF, if and only if p is congruent to
0,£1, 43 or +£4 modulo 13.

7. Let vp(n) :==n! +nP —n +13. If v,(n) is a square in Z, then it is a square also
modulo p. For n > p, we have that p|n!, and that n? = n by Fermat’s little
theorem. Hence for n > p we get v,(n) = 13 (mod p), which by the previous point
is not a square when p = 6 (mod 13). Hence v,(n) is not a square in Z for n > p.
In particular, y,(n) is a square for only finitely many values of n.

3. (*) Let K be a field of characteristic p > 0, containing IF,. Let a € K.

1. Show that the polynomial f = X? — X — a is separable in K[X].

2. Show that if L is an algebraically closed extension of K and « € L is a root of f,
then
{roots of f in L} = {a+x,x € F,}.

3. Show that ifa & {y? —y : y € K}, then K(«) has degree p over K. What happens
if a = yP — y for some y € K?

4. Show that, when K # K («), the set of field automorphisms of K (a) which fix all
elements in K, endowed with composition, is a group, and that it is cyclic of order

.
5. Find a polynomial @, € IF,[X] which defines Fp», in the sense that Fp» = Fp(«)
for some root « of @), in an algebraic closure of IF,,.

Solution:

1. We have that f/(X) = pXP~! —1 = —1, so that f and f’ are necessarily coprime
in K[X] and f is separable by a Criterion seen in class.

2. Suppose « € L is a root of f. Since raising to the p-th power (i.e., computing the
Frobenius automorphism) respects the sums, for z € F), we get

flat+z)=(a+z)! —(a+z)—a= f(a) + 2’ —2 =0,

since 2P = z for z € ), and « is a root of f. Since |a+ IFp| = p = deg(f), there
cannot be other roots, and we can conclude that

{roots of f in L} = {a+z,z € F,}.
3. We start from the easy case: if a = yP — y for some y € K, then a =y € K is

a root of f, and o + T, = IF, C K, so that any root of f is indeed in K. This
means that K («) = K in this case.
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Now assume that a ¢ {y» —y : y € K}. Then all the roots a + = of f lie
outside K, and we claim that f is irreducible. This claim implies then that
K(a) 2 K[X]/(f(X)), so that K(a) has degree p over K. To prove our claim, by
previous point we have that f factors in L[X] as

jx) =[x —a-a)

zely

so that if f = gh in K[X], unique factorization in L[X] gives that g is, up to a
multiplicative constant,
g=]]X —a—-a),
zel

where I C IF),. Let d = |I| = deg(g), and suppose that d > 0 (else, the factorization
is trivial and we are done). Then the coefficient of g of the term of degree d — 1
is =>  crla+x) = —da+ > ;x. This coefficient needs to lie in K, and since
Y werT €Fp C K, we get —da € K. But a ¢ K, so that the unique remaining
possibility is that d = p, in which case the decomposition f = gh is trivial. This
proves that f is irreducible, which was the remaining claim.

. If K # K(«a), by previous point we get that K(a) is a degree-p extension of
K. Let us denote by Autg (K («)) the set of field automorphisms of K(«) which
fix K. It is clearly a group with respect to composition since automorphism are
invertible and the identity id g () fixes K. Notice that any endomorphism of K («)
is injective as K («) is a field. Moreover, if such an endomorphism fixes K, then
it is also a K-linear map K (a) — K(«), and since those are K-vector spaces of
same dimension p, we can conclude that every endomorphism of K («) fixing K is
an automorphism. Hence Auty (K («)) coincides with the sets of endomorphisms
of K(a) fixing K. We have that K(«a) = K[X]/(XP — X — 1), with a ++ X, so
that to determine a ring homomorphism K(«) — K(«) fixing K is equivalent to
choosing an image for o in K («) which still satisfies the polynomial X? — X — 1.
By Point 2, this means that

Autg(K(o)) ={v: K(o) = K(a) : v|g =1dg,v(o) = a+z,x € Fp}.
Hence there are |[F))| = p elements in Autg (K («)), and this implies automatically

that Autg (K («)) is a cyclic group.

. By Point 3, we just need to take an element a & {y* —y : y € F,,}. Since y*? —y =0
for every y € IFp, we can just take a = 1, so that @), is a separable irreducible
polynomial, and so it defines IF,,» as an extension of I¥,.



