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Exercise sheet 14

[Groups]

1. Let G and H be groups and ϕ : G −→ H a group homomorphism. If N / G is a
normal subgroup, and ϕ is surjective, then show that ϕ(N) / H.

Solution:

It is enough to check that for every h ∈ H one has hφ(N)h−1 ⊆ φ(N). As φ is
surjective, for every h ∈ H there exists gh ∈ G such that φ(gh) = h. Then for each
x = φ(n) ∈ φ(N), where n ∈ N , we have

hφ(n)h−1 = φ(gh)φ(n)φ(gh)−1 = φ(ghng
−1
h ),

where the last equality comes from the fact that φ is a group homomorphism. Then
since N C G and n ∈ N , we have that ghng

−1
h ∈ N , implying that hφ(n)h−1 =

φ(ghng
−1
h ) ∈ φ(N). We can then conclude that hφ(N)h−1 ⊆ φ(N) for each h ∈ H,

and φ(N) CH.

2. Let ϕ : G −→ H be a set-theoretic map between groups. Show that ϕ is a homomor-
phism if and only if the graph

Γϕ = {(x, y) ∈ G×H | y = ϕ(x)}

is a subgroup of G×H. When is it a normal subgroup?

Solution:

Of course (1G, φ(1H)) ∈ Γφ, so that Γφ is never empty. Each element of Γφ is of the
form (u, φ(u)), for u ∈ G. Now Γφ is a subgroup of G × H if and only if for each
α, β ∈ Γφ one has αβ−1 ∈ Γφ. Writing down α = (u, φ(u)) and β = (v, φ(v)), we have
that Γφ ≤ G × H if and only if (uv−1, φ(u)φ(v)−1) ∈ Γφ for each u, v ∈ G, which is
equivalent to saying that

(∗) φ(uv−1) = φ(u)φ(v)−1, ∀u, v ∈ G.

This last property is satisfied when φ is a group homomorphism, so we are only left
to prove that (∗) implies that φ is a group homomorphism. Applying (∗) with u =
v = 1, we get φ(1) = 1. Then applying (∗) with u = 1, we get that φ(v−1) =
φ(v)−1 for each v ∈ G. Finally, applying (∗) with v = w−1, we can conclude that
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φ(uw) = φ(u)φ(w−1)−1 = φ(u)φ(w) for each u,w ∈ G, meaning that φ is a group
homomorphism.

We now want to characterize when Γφ C G × H. This happens if and only if Γφ is
stable under conjugation by elements of G×H, that is, if and only if

∀u, g ∈ G,∀h ∈ H, (gug−1, hφ(u)h−1) ∈ Γφ.

This last condition is equivalent to saying that, for u, g and h as above, one has
φ(gug−1) = hφ(u)h−1, i.e., assuming that φ is a group homomorphism (which is a
necessary condition), φ(u) = φ(g)−1hφ(u)(φ(g)−1h)−1. Since φ(g)−1h ranges over all
the elements of H, we can say that Γφ CG×H if and only if

∀u ∈ G, ∀h ∈ H,φ(u) = hφ(u)h−1.

This last condition is equivalent to saying that φ(G) ⊆ Z(H). We can conclude that
Γφ CG×H if and only if φ is a group homomorphism whose image lies in the center
of H.

3. Let G1 and G2 be two groups, and let G = G1×G2 be their direct product. Let H be
a subgroup of G. We denote by πi : G −→ Gi the two projection maps to the factors
of G, and by Ki < H the kernel of the restriction of πi to H. We assume that the
restrictions of π1 and π2 to H are both surjective.

1. Show that π1 induces by restriction an isomorphism K2 −→ N1 where N1 is a
normal subgroup of G1.

2. Show that if N1 = G1, then H = G1 ×G2.

3. Suppose in addition that G1 and G2 are simple groups. If N1 = {1}, show that
K1 = {1} as well. Show in that case that H is the graph of an isomorphism
G1 −→ G2.

Solution:

1. Let π′i := πi|H : H −→ Gi, so that Ki = ker(π′i) = ker(πi) ∩ H. Since π′1 is
a surjective map and K2 = ker(π′2) is a normal subgroup of H, we have that
N1 := π1(K2) = π′1(K2) is a normal subgroup of G1 by Exercise 1. Then π′1
restricts to a surjective map K2 −→ N1, whose kernel is ker(π′1) ∩ K2. This
intersection lies in ker(π1) ∩ ker(π2), which is easily seen to be trivial by writing
down the element of G as couples of elements in G1 and G2. Thus π1 restricts to
an isomorphism K2 −→ N1 as desired.

2. If G1 = N1 = π1(K2), then (λ, 1) ∈ H for each λ ∈ G1. Also, by surjectivity of π2,
for each µ ∈ G2 there exists λµ ∈ G1 such (λµ, µ) ∈ H, so that (1, µ) = (λµ, µ) ·
(λ−1µ , 1) ∈ H. In conclusion, for gi ∈ Gi, we have (g1, g2) = (g1, 1) · (1, g2) ∈ H,
meaning that H = G1 ×G2.
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3. If N1 = {1}, then by Point 1 we have K2 = 1. Interchanging the indexes 1 and 2 in
Point 1, one easily proves that π2 restricts to an isomorphismK1 −→ N2 := π2(K1)
with N2 C G2. As G2 is simple, there are only possibilities: either N2 = G2 or
N2 = {1}. In the first case one gets, similarly as in Point 2, that H = G1 × G2,
so that K2 = G1 × {1} 6= {1} (as G1 6= {1} because it is simple), contradiction.
Hence N2 = K1 = {1}.
Now we prove that H ⊆ G1 × G2 is a graph of a map φ : G1 −→ G2. This is
equivalent to say that if (g1, g2), (g1, g2) ∈ H for g1 ∈ G2 and g2, g

′
2 ∈ G2, then

g2 = g′2. This implication is true since, the first condition implies (1, g−12 g′2) ∈ H,
so that g−12 g′2 = 1 (and g2 = g′2) because K1 = {1}.
Then φ is a group homomorphism because H ≤ G1 × G2 (see Exercise 2). φ is
surjective because π′2 is. Moreover, ker(φ) = {g ∈ G1 : (g, 1) ∈ H} = {1} since
K2 = {1}. Hence φ is a bijective, implying that it is a group isomorphism.

[Rings]

4. Let A be an integral domain and K its fraction field. Show that if B is any ring, then
there is a “natural” bijection

{ring morphisms ψ : K −→ B} −→
{ring morphisms ϕ : A −→ B such that ϕ(x) ∈ B× for all x 6= 0 in A}.

Solution:

Let

X = {ring morphisms ψ : K −→ B} and

Y = {ring morphisms ϕ : A −→ B such that ϕ(x) ∈ B× for all x 6= 0 in A}.

Consider the canonical embedding j : A −→ K, with j(a) = a
1 . Then we define

% : X −→ Y as the restriction map sending ψ 7→ ψ|A = ψ ◦ j. We have that % is a map
because for every ψ ∈ X the map ψ ◦ j is a ring morphism (being a composition of
ring morphisms), and for x ∈ A \ {0} it gives ψ(x)ψ

(
1
x

)
= 1 in B, so that ψ(x) ∈ B×.

Let us now prove that % is a bijection:

• % is injective: let ψ,ψ′ ∈ X, and suppose that %(ψ) = %(ψ′). This means that
ψ|A = ψ′|A. Then for each a, c ∈ A, with c 6= 0, we get

ψ
(a
c

)
= ψ(a)ψ(c)−1 = ψ′(a)ψ′(c)−1 = ψ′

(a
c

)
,

so that ψ = ψ′.

Please turn over!



• % is surjective: we just need to prove that each map φ : A −→ B such that
φ(x) ∈ B× for all x 6= 0 does admit an extension ψ : K −→ B such that ψ|A = φ.
This is easily done by defining ψ

(
a
c

)
:= φ(a)φ(c)−1 for each a, c ∈ A with c 6= 0.

The map ψ is well-defined: suppose that a
c = a′

c′ with c, c′ 6= 0, so that ac′ = a′c;
then φ(c), φ(c′) ∈ B×, and

φ(cc′)(φ(a)φ(c)−1 − φ(a′)φ(c′)−1) = φ(a)φ(c′)− φ(a′)φ(c) = φ(ac′ − a′c) = 0,

and being φ(cc′) ∈ B× we get φ(a)φ(c)−1 = φ(a′)φ(c′)−1. Also, ψ is a ring
morphism: ψ(1) = 1, and for a, a′, c, c′ ∈ A with c, c′ 6= 0 we obtain

ψ

(
a

c
+
a′

c′

)
= ψ

(
ac′ + a′c

cc′

)
= ϕ(ac′ + a′c)ϕ(cc′)−1 =

= ϕ(a)ϕ(c)−1 + ϕ(a′)ϕ(c′)−1 = ψ
(a
c

)
+ ψ

(
a′

c′

)
and

ψ

(
a

c
· a
′

c′

)
= ψ

(
ac′ + a′c

cc′

)
= ϕ(aa′)ϕ(cc′)−1 =

= ϕ(a)ϕ(c)−1ϕ(a′)ϕ(c′)−1 = ψ
(a
c

)
· ψ
(
a′

c′

)
.

Clearly, ψ(a) = ψ(a1 ) = ϕ(a)ϕ(1)−1 = ϕ(a), so that ψ|A = ϕ and we have proven
that % is surjective.

5. Let A be an integral domain and K its fraction field. Let I ⊂ A be a non-zero prime
ideal. Denote

AI = {x ∈ K | x = a/b for some a and b in A with b /∈ I}.

1. Show that AI is a subring of K, and that A ⊂ AI .
2. Let J = IAI be the ideal in AI generated by I. Show that

J = {x ∈ K | x = a/b for some a ∈ I and some b in A− I}.

3. Show that J is a maximal ideal in AI , and that it is the unique maximal ideal.

4. Show that the natural ring homomorphism

A −→ AI/J

induces an injective ring homomorphism A/I −→ AI/J .

1. First, AI ⊆ K by definition. I is a prime ideal, so that I 6= A and 1 6∈ I. Thus
for each a ∈ A, we have that a = a

1 ∈ AI , meaning that A ⊆ AI . In particular,
AI contains 0 and 1. Also, for each a/b ∈ AI , written with b 6∈ I, we have
−a
b = −a

b ∈ AI , so that we are only left to prove that AI is stable under sum and
multiplication. This is immediate: the denominator of a sum or multiplication of
two fractions a/b and a′/b′ can always be taken to be the product bb′ of the two
denominators. But for b, b′ 6∈ I, one needs to have bb′ 6∈ I (as I is a prime ideal).
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2. Let x ∈ K. If x ∈ J , then x = m · ub = mu
b for some m ∈ I, u ∈ A and b ∈ A \ I.

Of course, mu ∈ I, so that x = a
b with a = mu ∈ I and b ∈ A \ I. Clearly, each x

of this form a
b can also be written as a · 1b ∈ J , whence the desired description

J = {x ∈ K | x = a/b for some a ∈ I and some b in A− I}.

3. We claim that J = AI \A×I . Given the claim, each ideal J ′ of AI strictly contain-
ing J does contain a unit and is forced to be the unit ideal, so that J is maximal.
Moreover every maximal ideal of AI does not contain any unit, so that it is con-
tained in J and has to coincide with J by maximality. So we can conclude that J
is the unique maximal ideal of AI . Now we prove the claim:

• A×I ∩ J = ∅: Suppose that a/b ∈ AI , with b 6∈ I, is invertible in AI . Writing
b
a = c

d in such a way that d 6∈ I, we get bd = ac. But bd 6∈ I as I is a prime
ideal, so that a 6∈ I. Now suppose that a

b = e
f with f 6∈ I. The equality af = be

implies that I does not contain e (using the fact that I does not contain a, b
and f and again that I is a prime ideal), so hat a

b 6∈ J .

• A×I ∪ J = AI : Suppose that a
b ∈ AI , with b 6∈ I, does not lie in J . Then we

get a 6∈ I, so that b
a ∈ AI and a

b ∈ A
×
I .

This proves that J consists of all non-units, which was our initial claim.

4. We claim that the natural ring homomorphism p : A −→ AI/J sending a 7→ a
1 +J

has kernel equal to I. Then, by the First Isomorphism Theorem for ring homo-
morphisms, p induces injective ring homomorphism p̄ : A/I −→ AI/J sending
a + I 7→ p(a). To conclude, we show that indeed ker(p) = I. For a ∈ A, we have
that a ∈ ker(p) if and only if a

1 ∈ J , which is equivalent to saying that a
1 = s

t , for
some s ∈ I and t 6∈ I. This last equality is equivalent to at = s, and this condition
is the same to asking that a ∈ I, because I is a prime ideal which is asked to
contain s but not t. From this we get I = ker(p).

6. Let n ≥ 1 and let A be a real matrix of size n× n with integral coefficients.

1. Show that

Φ :

{
Zn −→ Zn

x 7→ Ax

is a well-defined, Z-linear map.

2. Show that ker Φ and Im(Φ) are finitely-generated Z-modules. Are they free Z-
modules ?

3. Show that det(A) 6= 0 if and only if Im(Φ) has finite index in Zn. Show with an
example that Φ is not necessarily surjective.

4. Assume det(A) 6= 0. Try to guess what is the cardinality of the finite set Zn/Im(Φ),
as a function of A (and try to prove that this guess is correct...)

Solution:
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1. The map Φ is well-defined because for each x = (x1, . . . , xn) ∈ Zn and A = (aij) ∈
Mn(Z) the components of Ax are integral, as they are obtained by multiplying
and summing integer numbers. Linearity is immediately checked as in classical
linear algebra (the fact that Z is not a field is not a problem).

2. Since Z is a PID and Zn is a free Z-module of rank n, we know that its submodules
ker Φ and Im(Φ) are both free Z-modules of rank ≤ n, by Proposition 2 from the
Note on finitely-generated modules over a principal ideal domain. In particular,
both ker Φ and Im(Φ) are finitely generated and free Z-modules.

3. We have that Im(Φ) has finite index in Zn if and only if the finitely generated
Z-module Zn/Im(Φ) has rank 0, i.e. Im(Φ) has rank n.

Let ΦQ : Qn −→ Qn be the Q-linear map sending x 7→ Ax. We have that
det(A) 6= 0 if and only if the images via ΦQ of the vectors of the canonical basis of
Zn ⊆ Qn are Q-linear independent in Qn. In particular, if det(A) 6= 0, then the
images via Φ of the vectors of the canonical basis of Zn are Z-linear independent,
so that Im(Φ) is a free Z-module of rank n.

Conversely, suppose that Im(Φ) has Z-rank n. A free Z-basis for Im(Φ) consists of
Q-linear independent vectors in Qn (since each Q-linear combination is a positive
multiple of a Z-linear combination), and since Im(Φ) ⊆ Im(ΦQ), the map ΦQ
needs to be surjective. This implies that det(A) 6= 0.

The map Φ is not surjective even if det(A) 6= 0. For instance, takeA = diag(2, 1, . . . , 1).
Then det(A) = 2 6= 0, but (1, 0, . . . , 0) 6∈ Im(Φ).

4. If n = 1 and A = (λ) ∈ Z, then Zn/Im(Φ) = Z/aZ has cardinality equal to |a|.
For arbitrary n, if det(A) = ±1, then A−1 is invertible in Mn(Z), and so is the
map Φ, so that Zn/Im(Φ) = 1. A good guess for the cardinality of Zn/Im(Φ)
seems then to be |det(A)|.
The correctness of this guess can be easily checked for upper triangular matrices.
If A = (ai,j) is upper triangular (i.e., aij = 0 for i > j), then the image of Φ is

Im(Φ) = 〈(b1, . . . , bn)〉 ≤ Zn,

where bj := (a1j , a2j , . . . , anj) = (a1j , a2j , . . . , ajj , 0 . . . , 0) for each 1 ≤ j ≤ n. In
this case, we want to prove the claim that |Zn/Im(Φ)| = | det(A)| =

∏n
j=1 |ajj |.

Notice that both the image of Φ and the absolute value of det(A) do not change
if we change the sign to the entries in some columns of A, so that without loss of
generality we may assume that aii > 0 (they cannot be zero as det(A) 6= 0). Let
I = Im(Φ) and take s = (s1, . . . , sn) ∈ Zn. By adding a suitable multiple of bn to s,
we get have that s+I = s′+I for some s′ = (s′1, . . . , s

′
n, un)+I, where 0 ≤ un ≤ ann.

Repeating this argument (i.e., adding suitable multiples of bn−1, bn−2, . . . , b1 to
s′), we can say that s+ I = (u1, . . . , un) + I, for some 1 ≤ uj ≤ ajj . This proves
that |Zn/Im(Φ)| ≤ det(A). Now we have to prove that those representatives
(u1, . . . , un), where 1 ≤ uj ≤ ajj , do not coincide modulo Im(Φ). Suppose that
(u1, . . . , un) + Im(Φ) = (u′1, . . . , u

′
n) + Im(Φ) for some 0 ≤ uj , u

′
j < ajj . Let

u = (u1, . . . , un) and u′ = (u′1, . . . , u
′
n), and write u−u′ =

∑n
j=1 λjbj with λj ∈ Z.

Suppose by contradiction that uk 6= u′k for some k, and take this k to be maximal.
Then for h > k we have 0 = uh − u′h =

∑n
j=1 λjahj =

∑n
j=h λjahj and this can be
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used to prove that λh = 0 for h > k. Indeed, if λl 6= 0 for some maximal l > k,
then λl+1, . . . , λn would all be zero and 0 = ul − u′l = λlall, contradiction with
λl 6= 0. So, assuming by contradiction that uk 6= u′k with k maximal, we have
that λh = 0 for h > k. Then uk − u′k =

∑n
j=k λjakj = λkakk, so that uk and u′k

differ by a multiple of akk. But 0 ≤ uk, u
′
k < akk implies that |uk − u′k| < akk,

so that the only possibility is uk = u′k, contradiction. This proves that vectors
(u1, . . . , un) ∈ Zn, with 0 ≤ uj < ajj , parametrize distinct classes modulo Im(Φ)
of Zn, so that |Zn/Im(Φ)| = | det(A)| when A is a upper triangular matrix.

For the general case, one can use the fact that for each matrix A ∈ Mn(Z) one
can write A = V UW , for V,W ∈ SLn(Z) and U an upper triangular matrix in
Mn(Z). Then |det(A)| = |det(U)|, and the map ΦV : Zn −→ Zn associated
to V is an automorphism of Zn sending Im(U) = Im(UW ) to Im(A), so that
[Zn : Im(U)] = [Zn : Im(A)].

[Fields]

7. Let K be a field and L = K(T ) the field of rational functions with coefficients in K.
If x ∈ L is algebraic over K, show that x ∈ K.

Solution: Write x = f
g , where f, g ∈ K[T ] are coprime polynomials and g 6= 0.

If x is algebraic over K, there exists a monic polinomial p(X) ∈ K[X] such that
p(x) = 0. By multiplying this equality by gn, where n := deg(p), and writing p(X) =
Xn + an−1X

n−1 + · · ·+ a1X + a0, we get

(∗) fn + an−1f
n−1g + · · ·+ a1fg

n−1 + a0g
n = 0,

which implies that g|fn. This implies that g ∈ K, because if g were non-constant,
then any irreducible factor of g would divide f , in contradiction with the fact that g is
coprime with f . Hence g is invertible, and the equality (∗) implies that f |a0, so that
f is a constant polynomial as well and x ∈ K.

8. Let K = Fp where p is a prime number and let L/K be a finite extension. Denote by
ϕ : L −→ L the Frobenius morphism.

1. Show that the trace map trL/K : L −→ K, as defined in Exercise 1 of Sheet 12,
is non-zero (Hint: estimate the size of the kernel of trL/K .) Deduce that it is
surjective.

2. Show also that the norm map NL/K : L× −→ K× is surjective.

3. Show that

ker(trL/K) = {x ∈ L | x = ϕ(y)− y for some y ∈ L}

and that

ker(NL/K) = {x ∈ L | x =
ϕ(y)

y
for some y ∈ L×}.
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Solution:

1. Let n = [L : K]. Then ker(trL/K) is the set of roots of the polynomial f =∑n−1
j=0 X

pj ∈ L[X], so that | ker(trL/K)| ≤ deg(f) = pn−1 < pn = |L| and trL/K is
non-zero. Since this map is non-zero and K-linear, its image is a non-zero K-linear
subspace of K, and the only possibility is that Im(trL/K) = K.

2. Let x be a multiplicative generator of L×. Then x has order pn − 1 in L×. Now

NL/K(x) =
n−1∏
j=0

xp
j

= x
∑n−1

j=0 p
j

= x
pn−1
p−1

is an element of K× which has order p − 1 in L×. Since the norm map is a
group homomorphism L× −→ K×, the subgroup generated by NL/K(x), whose
cardinality is p− 1, is contained in the image of NL/K . But |K×| = p− 1, so that
NL/K is surjective.

3. Since trL/K is surjective, by the First Isomorphism Theorem for groups we have
an isomorphism of additive groups K ∼= L/ ker(trL/K). Then | ker(trL/K)| = pn−1.
We want to prove that ker(trL/K) = Im(φ − idL), where φ − idL is clearly a K-
linear map L −→ L. First, we prove the containment “⊇”. Writing trL/K as

trL/K =
∑n−1

j=0 φ
j , and using the fact that we saw in class that φn = idL, we get

trL/K ◦(φ− idL) =
n−1∑
j=0

φj+1 −
n−1∑
j=0

φj = φn − idL = 0,

so that Im(φ − idL) ⊆ ker(trL/K). In order to get an equality of the two sets, it
is enough to show that |Im(φ− idL)| = pn−1. As φ− idL is linear and has kernel
equal to Fp, First Isomorphism Theorem for groups gives

|Im(φ− idL)| = |L|/| ker(φ− idL)| = pn−1,

and we can conclude that

ker(trL/K) = {x ∈ L | x = ϕ(y)− y for some y ∈ L}.

We use a similar argument to describe the kernel of the norm map. First, notice
that β : y 7→ φ(y)

y = yp−1 is a group map L× −→ L×. We claim that ker(NL/K) =

Im(β). By multiplicativity of the norm, for each y ∈ L× we have

NL/K(β(y)) = NL/K(yp−1) = NL/K(y)p−1 = 1,

since NL/K(y) ∈ K×. Hence ker(NL/K) ⊇ Im(β), and to prove equality we just

check that the cardinalities coincide. We have | ker(NL/K)| = pn−1
p−1 by the First

Isomorphism Theorem for groups, and since ker(β) = K×, the same theorem gives
|Im(β)| = pn−1

p−1 as well. We can then conclude that

ker(NL/K) = {x ∈ L | x =
ϕ(y)

y
for some y ∈ L×}.
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9. Let K be a finite field, K̄ an algebraic closure of K. Let x ∈ K̄ be any element, and
P = Irr(x,K) the minimal irreducible polynomial of x in K[X]. Let (x1, . . . , xd) be
the distinct roots of P in K̄. Prove that∏

1≤i,j≤d
i 6=j

(xi − xj)2 ∈ K.

Solution:

Let γ =
∏

1≤i,j≤d
i 6=j

(xi − xj)
2. To prove that γ lies in K, it is enough to check that

φ(γ) = γ, where φ : x 7→ xp is the Frobenius endomorphism of K̄. Suppose that y ∈ K̄
is a root of P . Then φ(y) = yp is also a root, since P (φ(y)) = φ(P (y)) = 0. Hence φ
restricts to a map φ′ : {x1, . . . , xd} −→ {x1, . . . , xd}. Since φ is injective, φ′ is injective
as well, so that it is a bijection of the set {x1, . . . , xd}. Then

φ(γ) = φ

 ∏
1≤i,j≤d
i 6=j

(xi − xj)2

 =
∏

1≤i,j≤d
i 6=j

(φ(xi)− φ(xj))
2 =

∏
1≤i,j≤d
i 6=j

(xi − xj)2 = γ,

where in the third equality we have used the fact that φ permutes the xi’s, and that γ
is stable under permuting the xi’s, since the indexes in the product range on all values
1 ≤ i, j ≤ d.


