D-MATH Algebra 1 HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 1

1. Let (G,-) be a group. We say that G is abelian if Vx,y € G, z-y=y-z. Forge G
we define the order of g, which we denote ordg(g), as the minimal positive integer n
such that ¢g" = 1¢, if such n exists. Else we say that g has infinite order. Prove the
following statements for a group G:

1. feeGisst. V€ G, e-x =z, then e = 1.

1

2. G is abelian if and only if the inversion map G — G, z — x~* is a group homo-

morphism.
3. If g2 = 1¢ for every g € G, then G is abelian.
4. If g € G has finite order, g~! is a power of g.
5. If G is finite, every g € GG has finite order.

Solution:

1. Suppose that for all x € G we have e - © = x. Applying this for x = 15 we get
e=¢€e-1lg =1q.

2. We have that G is abelian if and only if xy = yx for all x,y € G, if and only if
ryr~ly~! = 1g for all x,y € G, if and only if z7 1y~ ! =y~ o=t for all 2,y € G.
Being (zy)~! = y~t2~!, the last statement is equivalent to saying that z=!'y~! =

(xy)~! for all z,y € G, that is, that the inversion respects multiplication. Hence

G is abelian if and only if the inversion map is a group homomorphism.

3. g> = 1g means g = ¢~ ', and this situation occurs for all g € G if and only if the

inversion coincides with the identity, in which case it is a group homomorphism
and by previous point G is abelian.

4. If ¢ € G has finite order, then there exists n > 0 such that ¢" = 1g. Then
¢" g = 1¢, so that ¢" ! = g~! and the inverse of ¢ is a power of g.

5. Let g € G and consider the map 3, : N — G sending n + ¢". If G is finite, then
By cannot be injective. Hence there exists two natural numbers m < n such that
g™ = ¢g". Multiplying by ¢~ gives ¢"~"™ = 1, and being n — m > 0 we get that
g has finite order.

2. We will here consider monoids, which are defined in the same way as groups, but
without inversion map. More precisely, a monoid consists of a set .S together with a
map — - — : G X G — G and a distinguished element 1g € S satisfying the following
axioms:
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o Vr,y,z €S9, (xy)z:x(yz)

eVreS lg-e=z-1g==

We say that y € S'is a left (resp., right) inverse of x € S'if y-x = 1g (resp., -y = 1g).

Let X be a non-empty set and consider the set of functions End(X) = {f : X — X}.

1.

Prove that End(X), together with the composition of functions o, is a monoid for
every set X.

. Prove that f € End(X) has a left (resp., right) inverse if and only if f is injective

(resp., surjective).

. For which sets X does there exist f € End(X) which has a left inverse but no

right inverse?

[You can use this formulation of the axiom of choice: Let {X;}ier be a family of non-
empty sets indexed by I # @. Then there exists a family {z;};c; such that z; € Xj]

Solution:

1.

It is easy to check associativity by assuming f, g, h € End(X) and comparing the
functions (f og) o h and f o (go h) on each element x € X. Both of them map
indeed = — f(g(h(z))). Hence they are the same function. Moreover, it is clear
that composing a function f with the identity idx : z — = we get again f, so that

idx = 1gna(x)-

. Suppose f € End(X) has a left inverse g : X — X, i.e. go f = idx. Then if

f(z) = f(y) for x,y € X, we get x = g(f(z)) = g(f(y)) = vy, proving injectivity
of f. Now suppose that f has a right inverse h: X — X, i.e. foh =idx. Then
for each x € X, we have that x = f(h(z)), proving surjectivity of f. So we have
proved the “only if” part, and we are left to construct left and right inverses.

If f: X — X is injective, then we can can pick zp € X and define a function
g: X — X sending f(z) — z and X \ f(X) > y — x0. This is a well-defined
action by injectivity of f, and for all x € X we have ¢g(f(z)) = = by definition, so
that g is a left inverse of g.

If f: X — X is surjective, we can use axiom of choice (as stated in the exercise),
with I := X # @ and X, = f'(y) # @. Considering the resulting family
{zy}yex we can define h : X — X via h(y) = z,. Then we obtain, Yy € X,
f(h(y)) = f(zy) = y, meaning that h is a right inverse of f.

. The situation in which there is a function with left inverse but without any right

inverse occurs precisely when X is infinite. Via the axiom of choice, one can prove
that a set X is infinite if it is Dedekind infinite, that is, there exists a proper subset
X' such that |X| = |X'|, say via ¢ : X — X'. Then ¢ can also be seen as a map
X — X, which by construction happens to be injective but not surjective. On
the other hand, an injective map f : X — X gives a one-to-one correspondence
X < Im(f), and if f is not surjective Im(f) is a proper subset of X, which needs
to be infinite.
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3. Show that there are precisely two non-isomorphic groups of order 4, and construct
their multiplication table.

Solution:

We consider a group G with 4 distinct elements 1,a,b and ¢. Then a-b € G can only
be equal to 1 or ¢ (ab = a gives b =1, and ab = b gives a = 1). So we can start writing
down two different tables of multiplication:

S| o
SR

b ¢
b ¢

= Qe
o 2|

(A) and (B)

o o o
o O
o o Q Yo
o O

Cancellation law implies that, similarly as in a Sudoku, in a single row or column we
cannot get twice the same element. Using this rule on both tables and completing
them in all possible ways we obtain

11 a b c -1 a b ¢ -1 a b ¢
111 a b c 1|1 a b c 1|1 a b ¢
(A1)lala 1 ¢ b| (A2)lala 1 ¢ b| and (B)|ala ¢ 1 b
b|b ¢ 1 a blb ¢ a 1 blb 1 ¢ a
cle b a 1 cle b 1 a cle b a 1

But the tables (A2) and (B) are the same up to renaming a — ¢ and ¢ — a, while
(A1) is the only one where all elements have order < 2. In conclusion we have two
non-isomorphic groups of order 4.

4. Consider the set Z x Z together with the binary operation x defined by
(a,h) (b, k) = (a + (=1)"b, h + k)

1. Show that (Z x Z, ) is a group and that it is not abelian.
2. Find all elements having finite order.

3. Consider the projection maps 71,79 : Z X Z — 7 defined by m1((m,n)) = m and
ma((m,n)) = n. Determine if they are morphism of groups (Z x Z,*) — (Z,+).

Solution:

1. Let us first prove that (Z x 7Z, *) is a group:
e Associativity. It is easy to check that ((a,h) (b, k)) % (¢,1) = (a, h) * ((b, k) *
(c,])) = (a+ (=) + (=) ke, h+ k +1), for all a,b, ¢, h, k1 € Z.
e Neutral element. Solving (e, i) * (a,h) = (a,h) (for all a,h € Z) gives
e =1 = 0. Since we have (a,h) * (0,0) = (a, h), we get 15 = (0,0).
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e Inverse element. Solving (a,h) * (b, k) = (0,0) gives conditions k = —h and
b= —(—1)"a. Such condition guarantees (b, k) to be a left inverse as well:

(—(=1)"a,=h) * (a,h) = (—=(=1)*a+ (=1)""a,0) = 0

since h and —h have the same parity.

The fact that the group is not abelian can be checked considering (0, 1) % (1,0) =
(—-1,1) # (1,1) = (1,0) % (0, 1).

We denote any n-repeated multiplication by * as an n-th power. With an easy
induction one can show that the second entry of (a, h)™ is nh, which can be zero
for n > 0 only if h = 0. Hence elements of finite order are of the form (a,0). But
the same easy induction gives (a,0)"” = (na, 0), which is zero for positive n only if
a = 0. Hence 1¢ is the only element of finite order.

. We see that m fails to be a morphism of groups:

71((0,1) % (1,0)) = m1((—1,1)) = =1 # 0+ 1 =m1((0,1)) + m1((1,0))

On the other hand, 3 is a morphism of groups (Z x Z, x) — (7Z,+) since for all
a,b, h, k € Z we have the equality:

mo((a,h) % (b, k) = mo((a+ (=1)"b,h + k) = h + k = ma((a, h)) + m2((b, k))

5. (*) Fix an integer n > 1 and consider the symmetric group S, := Sym({1,...,n}).
For p(X1,...,X,) € C[Xy,...,X,] and o € Sy, define p, = p(Xy(1),- -+, Xo(m))- Let
f = H1§i<j§n<Xi — Xj) S (D[Xl, .. ,Xn].

1.

Prove that for every permutation o € Sy, there exists a unique element a(o) € {£1}
such that f,(X) = a(o)f.

. Show that the resulting map

a: S, — {£1}

is a group homomorphism.

Let a # b be elements of {1,...,n}, and consider the permutation 7 € S,, switching
a and b and fixing all the other elements. Show that a(7) = —1.

Solution (sketch):

1. Since each factor of f can be found once again in f,, eventually with a changed

signed, we get that f, and f are the same up to a sign. This can be formalized in
several ways, e.g. defining quantities a;j(0) = sign(o(j) — o()), so that

Xo(j) = Xo() = @i5(0) (Xmax(o(i),0(j)) — Xmin(o(i),0()))

and comparing the product formulas for f and f,.
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2. We have «a(o) = fo/f, and

_Jor _forto _ Jor
e f e
so that we are left to prove that f,r/f, = fr/f. To prove this, one can first show

that the following equalities hold for any p,q € C[X1,...,X,]:

a(oT)

(o)

® Dor = (pT)U
i (pQ)a = Poqo
Then

fch:(fT)a:(fT> _Jfr
fs fo fle
I —

because = = a(7) € {1} is a polynomial which is fixed by o.

3. To see that a permutation 7 switching two elements a and b and fixing the others
has negative value of « it is enough to consider what happens to the sign of the
factors X; — X; distinguishing some cases. Without loss of generality one can
assume that a < b:

e The factor X, — X} changes sign.

e For i < a, the factors X; — X, and X; — X} are unchanged, and the same occurs
to then factors X, — X; and X, — X; when b < i.

e For a < i < b, the factors X, — X; and X; — X} change all sign, but they are
in an even quantity (precisely, they are 2(b —a — 1).

In total, we have an odd number of sign changes, so that a(7) = —1.



