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Solutions of exercise sheet 1

1. Let (G, ·) be a group. We say that G is abelian if ∀x, y ∈ G, x · y = y · x. For g ∈ G
we define the order of g, which we denote ordG(g), as the minimal positive integer n
such that gn = 1G, if such n exists. Else we say that g has infinite order. Prove the
following statements for a group G:

1. If e ∈ G is s.t. ∀x ∈ G, e · x = x, then e = 1G.

2. G is abelian if and only if the inversion map G → G, x 7→ x−1 is a group homo-
morphism.

3. If g2 = 1G for every g ∈ G, then G is abelian.

4. If g ∈ G has finite order, g−1 is a power of g.

5. If G is finite, every g ∈ G has finite order.

Solution:

1. Suppose that for all x ∈ G we have e · x = x. Applying this for x = 1G we get
e = e · 1G = 1G.

2. We have that G is abelian if and only if xy = yx for all x, y ∈ G, if and only if
xyx−1y−1 = 1G for all x, y ∈ G, if and only if x−1y−1 = y−1x−1 for all x, y ∈ G.
Being (xy)−1 = y−1x−1, the last statement is equivalent to saying that x−1y−1 =
(xy)−1 for all x, y ∈ G, that is, that the inversion respects multiplication. Hence
G is abelian if and only if the inversion map is a group homomorphism.

3. g2 = 1G means g = g−1, and this situation occurs for all g ∈ G if and only if the
inversion coincides with the identity, in which case it is a group homomorphism
and by previous point G is abelian.

4. If g ∈ G has finite order, then there exists n > 0 such that gn = 1G. Then
gn−1g = 1G, so that gn−1 = g−1 and the inverse of g is a power of g.

5. Let g ∈ G and consider the map βg : N→ G sending n 7→ gn. If G is finite, then
βg cannot be injective. Hence there exists two natural numbers m < n such that
gm = gn. Multiplying by g−m gives gn−m = 1, and being n −m > 0 we get that
g has finite order.

2. We will here consider monoids, which are defined in the same way as groups, but
without inversion map. More precisely, a monoid consists of a set S together with a
map − · − : G × G → G and a distinguished element 1S ∈ S satisfying the following
axioms:
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• ∀x, y, z ∈ S, (x · y) · z = x · (y · z)
• ∀x ∈ S, 1S · x = x · 1S = x

We say that y ∈ S is a left (resp., right) inverse of x ∈ S if y ·x = 1S (resp., x ·y = 1S).

Let X be a non-empty set and consider the set of functions End(X) = {f : X → X}.

1. Prove that End(X), together with the composition of functions ◦, is a monoid for
every set X.

2. Prove that f ∈ End(X) has a left (resp., right) inverse if and only if f is injective
(resp., surjective).

3. For which sets X does there exist f ∈ End(X) which has a left inverse but no
right inverse?

[You can use this formulation of the axiom of choice: Let {Xi}i∈I be a family of non-
empty sets indexed by I 6= ∅. Then there exists a family {xi}i∈I such that xi ∈ Xi]

Solution:

1. It is easy to check associativity by assuming f, g, h ∈ End(X) and comparing the
functions (f ◦ g) ◦ h and f ◦ (g ◦ h) on each element x ∈ X. Both of them map
indeed x 7→ f(g(h(x))). Hence they are the same function. Moreover, it is clear
that composing a function f with the identity idX : x 7→ x we get again f , so that
idX = 1End(X).

2. Suppose f ∈ End(X) has a left inverse g : X → X, i.e. g ◦ f = idX . Then if
f(x) = f(y) for x, y ∈ X, we get x = g(f(x)) = g(f(y)) = y, proving injectivity
of f . Now suppose that f has a right inverse h : X → X, i.e. f ◦ h = idX . Then
for each x ∈ X, we have that x = f(h(x)), proving surjectivity of f . So we have
proved the “only if” part, and we are left to construct left and right inverses.

If f : X → X is injective, then we can can pick x0 ∈ X and define a function
g : X → X sending f(x) 7→ x and X \ f(X) 3 y 7→ x0. This is a well-defined
action by injectivity of f , and for all x ∈ X we have g(f(x)) = x by definition, so
that g is a left inverse of g.

If f : X → X is surjective, we can use axiom of choice (as stated in the exercise),
with I := X 6= ∅ and Xy = f−1(y) 6= ∅. Considering the resulting family
{xy}y∈X we can define h : X → X via h(y) = xy. Then we obtain, ∀y ∈ X,
f(h(y)) = f(xy) = y, meaning that h is a right inverse of f .

3. The situation in which there is a function with left inverse but without any right
inverse occurs precisely when X is infinite. Via the axiom of choice, one can prove
that a set X is infinite if it is Dedekind infinite, that is, there exists a proper subset
X ′ such that |X| = |X ′|, say via φ : X → X ′. Then φ can also be seen as a map
X → X, which by construction happens to be injective but not surjective. On
the other hand, an injective map f : X → X gives a one-to-one correspondence
X ↔ Im(f), and if f is not surjective Im(f) is a proper subset of X, which needs
to be infinite.
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3. Show that there are precisely two non-isomorphic groups of order 4, and construct
their multiplication table.

Solution:

We consider a group G with 4 distinct elements 1, a, b and c. Then a · b ∈ G can only
be equal to 1 or c (ab = a gives b = 1, and ab = b gives a = 1). So we can start writing
down two different tables of multiplication:

(A)

· 1 a b c

1 1 a b c
a a 1
b b
c c

and (B)

· 1 a b c

1 1 a b c
a a c
b b
c c

Cancellation law implies that, similarly as in a Sudoku, in a single row or column we
cannot get twice the same element. Using this rule on both tables and completing
them in all possible ways we obtain

(A1)

· 1 a b c

1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

(A2)

· 1 a b c

1 1 a b c
a a 1 c b
b b c a 1
c c b 1 a

and (B)

· 1 a b c

1 1 a b c
a a c 1 b
b b 1 c a
c c b a 1

But the tables (A2) and (B) are the same up to renaming a 7→ c and c 7→ a, while
(A1) is the only one where all elements have order ≤ 2. In conclusion we have two
non-isomorphic groups of order 4.

4. Consider the set Z× Z together with the binary operation ∗ defined by

(a, h) ∗ (b, k) = (a+ (−1)hb, h+ k)

1. Show that (Z× Z, ∗) is a group and that it is not abelian.

2. Find all elements having finite order.

3. Consider the projection maps π1, π2 : Z× Z→ Z defined by π1((m,n)) = m and
π2((m,n)) = n. Determine if they are morphism of groups (Z× Z, ∗)→ (Z,+).

Solution:

1. Let us first prove that (Z× Z, ∗) is a group:

• Associativity. It is easy to check that ((a, h) ∗ (b, k)) ∗ (c, l) = (a, h) ∗ ((b, k) ∗
(c, l)) = (a+ (−1)hb+ (−1)h+kc, h+ k + l), for all a, b, c, h, k, l ∈ Z.

• Neutral element. Solving (e, i) ∗ (a, h) = (a, h) (for all a, h ∈ Z) gives
e = i = 0. Since we have (a, h) ∗ (0, 0) = (a, h), we get 1G = (0, 0).
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• Inverse element. Solving (a, h) ∗ (b, k) = (0, 0) gives conditions k = −h and
b = −(−1)ha. Such condition guarantees (b, k) to be a left inverse as well:

(−(−1)ha,−h) ∗ (a, h) = (−(−1)ha+ (−1)−ha, 0) = 0

since h and −h have the same parity.

The fact that the group is not abelian can be checked considering (0, 1) ∗ (1, 0) =
(−1, 1) 6= (1, 1) = (1, 0) ∗ (0, 1).

2. We denote any n-repeated multiplication by ∗ as an n-th power. With an easy
induction one can show that the second entry of (a, h)n is nh, which can be zero
for n > 0 only if h = 0. Hence elements of finite order are of the form (a, 0). But
the same easy induction gives (a, 0)n = (na, 0), which is zero for positive n only if
a = 0. Hence 1G is the only element of finite order.

3. We see that π1 fails to be a morphism of groups:

π1((0, 1) ∗ (1, 0)) = π1((−1, 1)) = −1 6= 0 + 1 = π1((0, 1)) + π1((1, 0))

On the other hand, π2 is a morphism of groups (Z × Z, ∗) → (Z,+) since for all
a, b, h, k ∈ Z we have the equality:

π2((a, h) ∗ (b, k)) = π2((a+ (−1)hb, h+ k)) = h+ k = π2((a, h)) + π2((b, k))

5. (*) Fix an integer n > 1 and consider the symmetric group Sn := Sym({1, . . . , n}).
For p(X1, . . . , Xn) ∈ C[X1, . . . , Xn] and σ ∈ Sn, define pσ = p(Xσ(1), . . . , Xσ(n)). Let
f :=

∏
1≤i<j≤n(Xi −Xj) ∈ C[X1, . . . , Xn].

1. Prove that for every permutation σ ∈ Sn, there exists a unique element α(σ) ∈ {±1}
such that fσ(X) = α(σ)f .

2. Show that the resulting map

α : Sn → {±1}

is a group homomorphism.

3. Let a 6= b be elements of {1, . . . , n}, and consider the permutation τ ∈ Sn switching
a and b and fixing all the other elements. Show that α(τ) = −1.

Solution (sketch):

1. Since each factor of f can be found once again in fσ, eventually with a changed
signed, we get that fσ and f are the same up to a sign. This can be formalized in
several ways, e.g. defining quantities aij(σ) := sign(σ(j)− σ(i)), so that

Xσ(j) −Xσ(i) = aij(σ)(Xmax(σ(i),σ(j)) −Xmin(σ(i),σ(j)))

and comparing the product formulas for f and fσ.
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2. We have α(σ) = fσ/f , and

α(στ) =
fστ
f

=
fστ
fσ

fσ
f

=
fστ
fσ

α(σ)

so that we are left to prove that fστ/fσ = fτ/f . To prove this, one can first show
that the following equalities hold for any p, q ∈ C[X1, . . . , Xn]:

• pστ = (pτ )σ

• (pq)σ = pσqσ

Then
fστ
fσ

=
(fτ )σ
fσ

=

(
fτ
f

)
σ

=
fτ
f

because fτ
f = α(τ) ∈ {±1} is a polynomial which is fixed by σ.

3. To see that a permutation τ switching two elements a and b and fixing the others
has negative value of α it is enough to consider what happens to the sign of the
factors Xi − Xj distinguishing some cases. Without loss of generality one can
assume that a < b:

• The factor Xa −Xb changes sign.

• For i < a, the factors Xi−Xa and Xi−Xb are unchanged, and the same occurs
to then factors Xa −Xi and Xb −Xi when b < i.

• For a < i < b, the factors Xa −Xi and Xi −Xb change all sign, but they are
in an even quantity (precisely, they are 2(b− a− 1).

In total, we have an odd number of sign changes, so that α(τ) = −1.


