
D-MATH Algebra I HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 2

The content of the marked exercise (*) should be known for the exam.

1. For each of the following groups G and subsets H ⊆ G, decide if H is a subgroup of G
(in that case, we write H ≤ G).

1. G = SL2(R) and H =

{(
1 x
0 1

)
: x ∈ R

}
.

2. G = Sym(N) and H = {σ ∈ G : σ(n) 6= n for only finitely many n ∈ N}.
3. G = Sym(N) and H = {σ ∈ G : σ(n) = n for only finitely many n ∈ N}.
4. G is any group and H = f−1(H ′), where f : G → G′ is a group homomorphism

and H ′ is a subgroup of G′.

5. G = Sym(X) and H = Aut(X), for a fixed group X.

6. G is any group and H = Gtor := {g ∈ G : ∃n ∈ N∗ : gn = 1}. Prove that H ≤ G
when G is finite or abelian, but this does not occur when G = Sym(N).

Solution:

1. Yes. G is the multiplicative group consisting of 2× 2 matrices with coefficient in
R having determinant 1, so that H ⊆ G. Clearly the identity matrix lies in H.
For each x, y ∈ R, we have(

1 x
0 1

)
·
(

1 y
0 1

)
=

(
1 x+ y
0 1

)
so that H is closed under multiplication and contains for all x ∈ R the inverse(

1 x
0 1

)−1
=

(
1 −x
0 1

)
. Hence H ≤ G.

2. Yes. By definition 1 ∈ H. For each σ ∈ Sym(N) let us denote Iσ := {n ∈ N :
σ(n) 6= n}. This means that σ ∈ H if and only if |Iσ| < ∞. Then for all σ ∈ Sn
we have Iσ−1 = Iσ since σ−1(x) 6= x if and only if x 6= σ(x), implying that for
σ ∈ H one has σ−1 ∈ H.

As concerns multiplication, let σ, τ ∈ H. We have that if n ∈ (N\ Iσ)∩ (N\ Iτ ) =
N \ (Iσ ∪ Iτ ), then n is fixed by σ and τ , and of course it is fixed by στ , namely,
n ∈ N \ Iστ . Hence N \ (Iσ ∪ Iτ ) ⊆ N \ Iστ implying that Iσ ∪ Iτ ⊇ Iστ . Then Iστ
happens to be finite, so that στ ∈ H.

3. No, because 1G = idN 6∈ H.
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4. Yes. This is immediately proved by saying that for x, y ∈ H one has f(1G) = 1G′ ,
f(xy) = f(x)f(y) and f(x−1) = f(x)−1, and those three elements lie all in H ′

precisely because H ′ is a subgroup of G′. Then 1G, xy and x−1 lie all in H =
f−1(H ′).

5. Yes. First, notice that idX is a group automorphism of X. Composition of
automorphisms is an automorphism: for all x, y ∈ X and f, g ∈ Aut(X) we
have (f ◦ g)(x · y) = f(g(x) · g(y)) = (f ◦ g)(x) · (f ◦ g)(y)). Finally, for g =
f−1 ∈ Aut(X) we have f(g(x)g(y)) = f(g(x))f(g(y)) = xy, so that by bijectivity
g(xy) = g(x)g(y) and g is an automorphism of groups.

6. If G is finite, Gtor = G by Exercise 1.5 from last exercise sheet, and of course it is
a subgroup of G.

If G is abelian, for all x, y ∈ Gtor we have positive integer m,n such that gm =
hn = 1G. Then applying induction and using commutativity we get (gh)mn =
gmnhmn = (gm)n(hn)m = 1G, so that gh ∈ Gtor. Clearly 1G ∈ Gtor. If gn = 1 for
g ∈ G and n > 0, then applying induction we get (g−1)n = (gn)−1 = 1−1G = 1G.
Hence Gtor ≤ G when G is abelian.

If G = Sym(N), then Gtor is not a subgroup. We assume here that 0 ∈ N. For
example, consider the permutation σ, τ ∈ Sym(N) defined by

σ(k) =

{
k + 1 for k even
k − 1 for k odd

τ(k) =


0 for k = 0
k + 1 for k odd
k − 1 for k > 0 even

Then it can be easily checked that σ2 = τ2 = idN, so that σ, τ ∈ Gtor. On the
other hand, for k an even natural number, we have (στ)(k) = σ(k + 1) = k + 2,
which is again even, so that an easy induction gives (στ)n(k) = k + 2n for every
n > 0, which is never equal to k, so that (στ)n 6= idN for every positive integer n,
and στ 6∈ Gtor.

2. Prove that the following maps are homomorphisms of groups. Find their kernel and
image.

1. The absolute value | · | : C× → R×, where |x+ iy| =
√
x2 + y2 for x, y ∈ R.

2. f : R→ C×, defined by f(x) = eix.

3. g : R→ GL2(R), defined by g(t) =

(
cosh(t) sinh(t)
sinh(t) cosh(t)

)
.

Solution:

1. Given two complex numbers z = a+ ib and w = c+ id, we have

|zw| = |(ac− bd) + i(ad+ bc)| =
√

(ac− bd)2 + (ad+ bc)2

=
√
a2c2 + b2d2 + a2d2 + b2c2 =

√
(a2 + b2)(c2 + d2) = |z| · |w|
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so that the absolute value is a homomorphism of groups. Let us know compute
kernel and image of the absolute value.

ker(| · |) = {z ∈ C : |z| = 1}

It is the unit circle in the complex plane, which can also be written down as
{x+iy ∈ C : x2+y2 = 1}. As concerns the image, we claim that Im(f) = R+. For
r ∈ R+ we have |r| =

√
r2 = r, so that R+ ⊆ Im(f). By definition Im(f) ⊆ R≥0

and since the only solution of the 2-variable equation
√
a2 + b2 = 0 is a = b = 0,

we have that Im(f) ⊆ R+.

2. ei(x+y) = eixeiy as property of the complex exponential, so that f is a group
homomorphism. We have that eix = cos(x) + i sin(x) is 1 if and only if x ∈
2πZ, so that ker(f) = 2πZ. As concerns the image, notice that eix = cos(x) +
i sin(x), x ∈ R is a parametrization of the unit circle of the complex plane: |eix| =√

cos(x)2 + sin(x)2 = 1 for every x, and for each couple of real numbers (a, b) ∈ R2

s.t. a2 + b2 = 1 there exists a real number x such that cos(x) = a and sin(x) = b.

3. Considering the entries of a matrix g(s)g(t) for real s and t, we need to compute

cosh(s) cosh(t) + sinh(s) sinh(t) =
(es + e−s)(et + e−t)

4
+

(es − e−s)(et − e−t)
4

=

=
es+t + e−s−t

2
= cosh(s+ t)

and

cosh(s) sinh(t) + sinh(s) cosh(t) =
(es + e−s)(et − e−t)

4
+

(es − e−s)(et + e−t)

4
=

=
es+t − e−s−t

2
= sinh(s+ t)

so that

g(s)g(t) =

(
cosh(s) sinh(s)
sinh(s) cosh(s)

)(
cosh(t) sinh(t)
sinh(t) cosh(t)

)
=

=

(
cosh(s+ t) sinh(s+ t)
sinh(s+ t) cosh(s+ t)

)
= g(s+ t)

and g is a group homomorphism.

Now let us compute the kernel of g. We have

ker(g) = {s ∈ R : cosh(s) = 1, sinh(s) = 0} = {0}

because sinh(s) = 0 is equivalent to ex = e−x, i.e. x = 0 (being x ∈ R). Hence
the map g is injective, and R ∼= Im(g). It can be easily shown that

Im(g) =

{(
x y
y x

)
: x2 − y2 = 1, x > 0

}
≤ {A ∈ SL2(R)|AT = A}
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3. Let G be a group and assume that S ⊂ G is a generating subset for G, i.e. G = 〈S〉.

1. Assume that f, g : G → H are two group homomorphisms and that f(s) = g(s)
for all s ∈ S. Prove: f = g.

2. Assume that ∀s, t ∈ S we have st = ts. Prove that G is abelian.

3. If s2 = 1 for all s ∈ S, does it follow that x2 = 1G for all g ∈ G?

Solution: NB. The subgroup 〈S〉 ≤ G generated by S can be equivalently defined as
the subset H = {s1 · · · · · sm ∈ G : ∀i ∈ I, si ∈ S or s−1i ∈ S} or as the intersection
K =

⋂
S⊆L≤G L. The two definitions coincide. Indeed, both H and K are easily shown

to be subgroups. S is a subset of H by definition, so that by construction K ≤ H,
since H need to appear as one of the L’s in the intersection defining K. But S ⊆ K
by definition, and being K closed under multiplication and taking inverses, it has to
contain all the elements in H, giving H ≤ K. Hence H = K.

1. Let x ∈ G. Being G generated by S, there are some elements s1, . . . , sm ∈ S and
signs ε1, . . . , ε ∈ {±1} such that x = sε11 · · · sεnn . Then comparing f(x) = g(x), by
writing down x as the product above and using that f and g respect products and
taking inverses. Being x arbitrary, we have f = g.

2. We can use an argument which is very similar to the one in the previous point.
Writing down arbitrary x and y as products of elements in S and inverses of
elements in S, commuting x and y becomes possible after proving that also couples
of elements (s, t−1) and (s−1, t−1), where s, t ∈ S, do commute. For couples of
elements (s, t−1) we have t(st−1) = (ts)t−1 = stt−1 = s, and this equality gives
t−1s = st−1. For couples of elements (s−1, t−1) we have s−1t−1 = (ts)−1 =
(st)−1 = t−1s−1. This completes the proof.

3. The answer is negative. You can consider G = 〈σ, τ〉 ≤ Sym(N), with σ and τ
defined as in the Solution of Exercise 6.1 of this Exercise sheet. Clearly, σ2 =
τ2 = 1G 6= (στ)2.

4. Consider the real Möbius transformations, that is, the following set of rational functions
with coefficients in R:

G =

{
f(X) =

aX + b

cX + d
: a, b, c, d ∈ R, ad− bc 6= 0

}
,

together with the composition of functions ◦.

1. Prove that (G, ◦) is a group.

2. Find a subgroup H of G such that (H, ◦) ∼= (R,+) as groups.

3. Consider the map

α : GL2(R)→ G(
a b
c d

)
7→ aX + b

cX + d

Prove that α is a group homomorphism. Determine its kernel and its image.
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4. Determine all Möbius transformations of order 1 and 2 (they are also called invo-
lutions).

1. First, we need to show that the composition of two Möbius functions is still a
Möbius function. For i = 1, 2, let fi = (aiX + bi)/(ciX + di), with aidi − bici 6= 0.
Then

f1 ◦ f2 =
a1

a2X+b2
c2X+d2

+ b1

c1
a2X+b2
c2X+d2

+ d1
=

(a1a2 + b1c2)X + (a1b2 + b1d2)

(c1a2 + d1c2)X + (c1b2 + d1d2)

as point (3) suggests, the four coefficients of f1 ◦ f2 are precisely the ones of the

matrix A1 · A2, where Ai =

(
ai bi
ci di

)
. Then applying Binet’s theorem about

determinants we have det(A1A2) = det(A1) det(A2) 6= 0 so that the coefficients
we wrote for f1 ◦f2 satisfy the inequality ad−bc 6= 0. Associativity of composition
can then be inferred by associativity of matrix product, and the neutral element
of G is idR = X, obtained for a = d = 1 and b = c = 0. The inverse of the
transformation f1 exists and can be defined as f−11 = dX−b

−cX+a .

2. It is enought to consider the subgroup of functions of the form f = X + r, r ∈ R.
Composing two such functions we are just summing the two correspondent real
numbers. [This subgroup is actually the image of the subgroup in Exercise 1.1 via
the morphism in the next point]

3. We have already proved that α is a morphism in Point 1.

ker(α) =

{(
a b
c d

)
∈ GL2(R)

∣∣∣aX + b

cX + d
= X

}
=

{(
a b
c d

) ∣∣∣a = d 6= 0, b = c = 0

}
It is the group of invertible diagonal matrices, which is isomorphic to R×. The
map α is surjective by definition, since four coefficients defining a Möbius function
can be always be put in a 2× 2 matrix so that it is invertible.

4. We look for transformations satisfying f2 = idR. i.e. f = f−1. Considering a
Möbius transformation of the form f = (aX + b)/(cX + d) we get

aX + b

cX + d
=

dX − b
−cX + a

⇔ (aX + b)(−cX + a) = (cX + d)(dX − b)

⇔ c(a+ d)X2 + (a2 − d2)X + b(a+ d) = 0⇔
(
a = −d or

{
c = b = 0
a = d

)
and we have three possibilities:

• a = d = 0. The we get a Möbius function of the form f = b/(cX), where
b 6= 0 6= c (so that ad − bc1 6= 0). Such an involution can just be written as
f = k/X, for k ∈ R×.

• a = −d 6= 0. We get an involution of the form f = (aX + b)/(cX − a), and
being a 6= 0 we can divide by a and write f = (X + λ)/(µX − 1), for λ, µ ∈ R
such that λµ 6= 1.
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• a = d 6= 0. Then we need b = c = 0, and we get the identity f = X.

In conclusion, all the non-trivial involution are

f =
k

X
, k 6= 0 and f =

X + λ

µX − 1
, λµ 6= 1

5. (*) As you have been told in class, Cayley’s theorem allows us to embed every group
into a symmetric group. Prove it by showing in detail that the following is a well-
defined injective group homomorphism:

χ : G→ Sym(G)

g 7→ χg : (x 7→ g · x)

Solution (sketch):

There are three things which need to be proven:

1. χ is a map, i.e. χg ∈ Sym(G). One has to prove that the association x 7→ g · x is
a bijection.

2. χ is a group homomorphism, i.e. χgh = χg ◦ χh. This can be tested on elements
x ∈ G.

3. χ is injective (easily done by comparing χg and χg′ on 1G).

Instead of proving directly that χg is bijective, one can first prove the equality in the
second step (considering χg as a non-necessarily bijective map G→ G). Then χg−1 is
an inverse of χg for all g ∈ G, so that those maps are all bijective.


