D-MATH Algebra 1 HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 3

The content of the marked exercise (*) should be known for the exam.

Recall that for G a group and H a subgroup of G we call a left (resp., right) coset of H
any subset of G of the form Hg (resp., gH), with g € G. We denote

G/H ={gH|g € G} and H\G = {Hg|g € G}

If H is a normal subgroup, we denote with G/H the quotient group.

():n}QSn,and

1. For a fixed integer n > 3, Consider H = {o € S,|o(1) = 1,
l<i,j<n

Xij:={o€Sylo(l) =i,0(n) =4} C Sy, for i # j and

1. Prove that H is a subgroup of S, whose right cosets o H are precisely the Xj ;.
2. For o € Sy, give a necessary and sufficient condition for o € X ;.

3. For n > 4, show that H is not a normal subgroup of S,,. What happens for n = 37
Solution:

1. It is immediate to check that H is a subgroup: the identity fixes 1 and n, and if
0,7 € H, it is clear that both ¢~! and o7 fix 1 and n.

Now take two couple of indexes ¢ # j and i’ # j', and suppose that o € X; ; and
o’ € Xy j. Then one has

re€oH < o reH < o lr(1)=1& o 7(n)=n =
= 7(1)=0(1)&7(n) =0(n) <= 7€ Xo01),0(n)

so that o H = X, (1) o(n) and the X; ; are all the right cosets of H.

2. For i # j indexes, denote by 7; ; the permutation which transpose 1 with 7 and n
with j, and fixes all the non-mentioned elements. Then 7; (1) =4 and 7; ;(n) = j
by definition, so that X;; = 7 ;H by the previous point. Then we have the
following equivalent conditions:

ceX;; & oeT;H <~ Ti_jlaEH < JdheH:o=mj0h

3. Suppose that n > 4. Then 1 <2 <3 <n. Call 7 = (2 3) and 0 = (1 2). Clearly,
7€ H. But oro ! = (12)(23)(12)=(13)¢ H, sothat cHo ' ¢ H and H is

not normal.

If n = 3, any permutation ¢ € H is forced to fix 2 as well, so that H = 1, which
is clearly a normal subgroup, since it is stable under conjugation.
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2. Let G be a group, and H < G be a subgroup.

1. Prove that the inversion map i : G — G induces a well-defined map G/H — H\G.

2. Show that |H\G| = |G/H|. When it is finite, we denote this cardinality by [G : H],
and call it the index of H in G.

3. Now suppose that K is an intermediate subgroup, H < K < G, and that H has
finite index in G. Prove that [G : H] = [G : K|[K : H] and in particular H has
finite index in K and K has finite index in G. [Hint: Decompose G into cosets of
H starting from decompositions of G into cosets of K and of K into cosets of H.]

Solution:

1. Amapi: G/H — H\G induced by i should be defined by gH ~ Hg~!. We
prove that this is a well-defined map. We have

gH=¢H < g'gd€eH < Hg'g=H < Hg'=Hg™ ",
which proves not only that i is well-defined (by considering the implication =),
but also that it is injective (by considering the converse implication).

2. The map 7 from the previous point is surjective (since for each g € G we have
i(g7'H) = Hg), and being it also injective as we saw, it is a bijection. Hence
|G/H| = [H\G|.

3. Since cosets form a partition of a group, we can choose (using AC) sets of indexes
I and J and families of elements (g;)icr and (k;) ey, with g; € G and k; € K such
that we have disjoint unions

G=|JgK and K = | | k;H.
iel jeJ

Notice that |I| = [G : K] and |J| = [K : H]|. Then

G = Ugi U kiH = U gikiH  (%%),

el jedJ (4,5)eIxJ

and if we prove that this union is disjoint, then we will get |I x J| = [G : H].
Suppose that g;k; H N gyk;H is non-empty, then there exist h,h’ € H such that
x = gikjh = gykyh'. Since kjh,kyh' € K, we have x € ¢;K N gy K # &, so that
i = i’ by construction. Then g;kjh = g;k; h’ gives k;jh = kjh', and since this other
element g;” L2 lies in kjH NkjH, we also get j = j'. This proves that the union
(*x) is disjoint. Then |I x J| =[G : H] < oo by hypothesis, and since I and J are
not empty, set theory gives |I],|J| < oo, and

G:H|=|IxJ =|I-|J]=[G:K|K : H|

3. Given two groups H and K, we define on the cartesian product H x K the operation
(h,k)- (b, K") = (bW kE).
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1. Show that (H x K,-) is a group. It is called the direct product of the groups H
and K.

2. Consider the subsets H = H x {1} and K/ = {1y} x K of H x K. Prove that
they are normal subgroups of H x K, and that each element x € H x K can be
written in an unique way as a product x = A'k’, with i’ € H' and ¥’ € K'.

3. Now suppose that G is a group, and suppose that H and K are normal subgroups
of G such that HNK = {1g} and HK = {hk € G|lh € H,k € K} = G. Prove: G
is isomorphic to H x K.

Solution:

1. We have that the operation - on H x K inherits associativity from associativity
of the multiplications in H and K. The element (1, 15) is readily checked to be
neutral, and calling ¢y and ix the inversion maps of H and K, we obtain that
ig Xig : Hx K+ H x K, sending (h,k) — (ig(h),ix(k)) is an inversion map
for H x K. We can then conclude that H x K is a group with the operation - just
defined.

2. It is immediate to check that the projection maps m : H x K — H and 73 :
H x K — K are group homomorphisms. Then H' = H x {1k} = ker(ms) and
K'={1g} x K = ker(m ) are normal subgroups of H x K.

For (h,k) € H x K,h' = (ho,1) € H and k' = (1,ky) € K’', it is clear that
(h,k) = h'K' if and only if h = hg and k = ko, so that there exists a unique
decomposition of the required form.

3. First, let us prove that the elements of H commute with the elements of K. Let h €
H and k € K. The equality hk = kh is equivalent to the equality hkh~ k™! = 14.
To show this, notice that hkh~! € K (being K a normal subgroup) and kh™'k € H
(being H a normal subgroup), and that the left hand side lies in both H and K.
Being the intersection of the two subgroups trivial, we get hkh~'k~! = 15. Hence
elements in H commute with elements in K.

Now let us define the following map, where the group structure on H x K is defined
as before:

o: HxK—G
(h,k) — hk

Then ¢ is a group homomorphism: for every h,h’ € H and k,k’ € K we have
indeed

o((h, k) (W, K)) = ¢((hh, kK')) = hh'kk = hkW'E = ¢(h, k) - d(W K),

where in passage * we used the fact that elements of H commute with elements
of K.

Since HK = G by hypothesis, we have that ¢ is surjective. As concerns the kernel,
notice that if hk = 1 for h € H and k € K, thenonehas h = k! € HNK = {15},
so that the ker(¢) = {1g}. In conclusion, ¢ establish an isomorphism of groups
between G and H x K as desired.
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4. Let G be the subgroup of GLy(IR) consisting of all matrices of the form < g i) ) for

a,b € R (and a # 0). Find a normal subgroup H of G such that G/H is isomorphic
to R*, and write down an explicit isomorphism.

Solution:

G is easily checked to be a subgroup of GL2(R). In particular we have the formula

a b a b aa’ ab’ +b
(30 (2 0) (% 7Y wpasen

This formula implies that the projection of the first entry 7 : G — R*, sending

( 3 (1) > — a is a group homomorphism. It is clearly surjective, so that G/ ker(r)

is isomorphic to R* by the first isomorphism theorem. Hence we get that G/H is

isomorphic to R* for
szer(w)z{( (1) 11) > ‘bER}

More explicitly, the map 7 factors as m = 7 o p,

G - G/H =5 R*

where p : g — gH is the quotient map and 7 is the unique group isomorphism sending

a b
<0 1>Hb—>a.

5. Let G be a group. Prove that Inn(G) is a normal subgroup of Aut(G).
Solution:

Recall that Inn(G) = {o.|c € G} < Aut(G), where o.(x) := cxc™!. To prove that this
subgroup is normal, look at the conjugacy class in Aut(G) of any o.. For 7 € Aut(G)
and ¢ € G we have

Vz € G, (to.m V) (2) = m(er L (z)e™h) = r(e)zT(c) 1,
so that 7o,7! = 0 (.). This gives THT ! C H for every 7 € Aut(G), so that Inn(G)

is a normal subgroup of Aut(G).

6. (*) Let G be a group. For a,b € G, we define the commutator of a and b via [a,b] :=
aba~'b~1. Moreover, consider the commutator subgroup |G, G] = ([a,b])apec-

1. Show that the inverse of a commutator is a commutator, and that [a,b] = 1¢ if
and only if ¢ and b commute.
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2. Show that [G,G] is a normal subgroup of G.

3. Show that the quotient group G/[G,G] is abelian. We denote it by G?P, and call
it the abelianization of G.

4. Suppose that A is an abelian group, and that ¢ : G — A is a group homomorphism.
Prove: [G, G] C ker(¢).

5. Deduce that for each ¢ : G — A as above there exists a unique group homo-
morphism 1) : G* — A such that ¢ = 1) o 7, where 7 is the natural projection
G — G?b.

Solution:

1. For each a,b € G we have that [a,b][b,a] = aba='b"'bab~la=! = 1, so that the
inverse of the commutator [a,b] is [b,a]. Moreover, [a,b] = 1¢ if and only if
aba~1b~! = 14, which is equivalent to ab = ba.

2. If H is a subgroup of GG generated by a set S, one can prove that H is normal if
and only if gSg~! C H for every g € GG, and check normality just on generators.
But we will check normality directly on an element of the whole subgroup.

Let w € H (Watch out: this does not mean that u is itself a commutator!), and
x € G. Then

zur~t = wu tzur = wfut 2] € [G, G).

In conclusion, [G,G] is normal in G.

3. For every z,y € G, one has xy = [z,y|lyz. Hence the classes of = and y in the
quotient group G/[G, G] do commute.

4. For each a,b € G we obtain

([a.b]) = d(a)p(b)g(a) " d(b) "' = p(aba™'b7")[g(a), $(b)] = 14

since A is abelian. Then [G, G] C ker(¢), since it is generated by elements in the
kernel.

5. For each g € G, we denote by g = m(g) the corresponding class in G** = G/[G, G].
If a map 1 : G® — A realises ¢ = 1 o, then (n(g)) = #(g), so that (being
7 surjective) there cannot exist two such maps which are different. To prove
that ¥ (g) = ¢(g) well defines a map v, suppose that g3 = ga. Then there exists
u € [G, @] such that g1 = ugs, and this implies that ¢(g1) = ¢(ug2) = P(u)(g2) =
®(g2) by applying the previous point. Hence 1 is a well-defined map, the unique
one such that ¢ = 1 o w. Finally, 1 is a group homomorphism:

»(gh) = ¢(gh) = d(g)d(h) = ¥(G)¥(h).

7. Let G be a group. Define Z(G) = {x € G | xz = zx for all z € G}. Show that Z(G)
is a normal subgroup of G (it is called the center of G).

Solution:

Please turn over!



We have a group homomorphism v : G — Aut(G) sending g — o4, where o, is the
conjugation by g, as defined in the previous exercise. It is indeed immediate to check
on elements x € G that o40p = oy, for every g,h € G. Then we get

ker(y) ={g € G|Vr e X : grg ' =2} ={g € G|Vor € X : gz = xg} = Z(G),
so that the center of G is a normal of subgroup of G.

This can also be proved directly. First, notice that 1¢ € Z(G). Moreover, for g,h €
Z(G) we have that for every € X one gets ghz = grh = xgh, so that gh € Z(G).
Also g~ ! lies in the center: g7'z = (z7'g)™! = (go=!)~! = x¢g~!. This proves that
Z(G) < G. Moreover, for every g € Z(G) and x € G one has zgr~! = gzz=! = ¢, so

that xZ(G)z~! C Z(G) for every x € G and Z(G) is normal in G.



