Prof. Emmanuel Kowalski

Solutions of exercise sheet 3

The content of the marked exercise (*) should be known for the exam.

Recall that for G a group and H a subgroup of G we call a left (resp., right) coset of H any subset of G of the form Hg (resp., gH), with $g \in G$. We denote

$$G/H = \{gH|g \in G\} \ \text{ and } \ H\backslash G = \{Hg|g \in G\}$$

If H is a normal subgroup, we denote with G/H the quotient group.

- **1.** For a fixed integer $n \geq 3$, Consider $H = \{ \sigma \in S_n | \sigma(1) = 1, \sigma(n) = n \} \subseteq S_n$, and $X_{i,j} := \{ \sigma \in S_n | \sigma(1) = i, \sigma(n) = j \} \subseteq S_n$, for $i \neq j$ and $1 \leq i, j \leq n$.
 - 1. Prove that H is a subgroup of S_n , whose right cosets σH are precisely the $X_{i,j}$.
 - 2. For $\sigma \in S_n$, give a necessary and sufficient condition for $\sigma \in X_{i,j}$.
 - 3. For $n \geq 4$, show that H is not a normal subgroup of S_n . What happens for n = 3?

Solution:

1. It is immediate to check that H is a subgroup: the identity fixes 1 and n, and if $\sigma, \tau \in H$, it is clear that both σ^{-1} and $\sigma\tau$ fix 1 and n.

Now take two couple of indexes $i \neq j$ and $i' \neq j'$, and suppose that $\sigma \in X_{i,j}$ and $\sigma' \in X_{i',j'}$. Then one has

$$\tau \in \sigma H \iff \sigma^{-1}\tau \in H \iff \sigma^{-1}\tau(1) = 1 \& \sigma^{-1}\tau(n) = n \iff \tau(1) = \sigma(1) \& \tau(n) = \sigma(n) \iff \tau \in X_{\sigma(1),\sigma(n)}$$

so that $\sigma H = X_{\sigma(1),\sigma(n)}$ and the $X_{i,j}$ are all the right cosets of H.

2. For $i \neq j$ indexes, denote by $\tau_{i,j}$ the permutation which transpose 1 with i and n with j, and fixes all the non-mentioned elements. Then $\tau_{i,j}(1) = i$ and $\tau_{i,j}(n) = j$ by definition, so that $X_{i,j} = \tau_{i,j}H$ by the previous point. Then we have the following equivalent conditions:

$$\sigma \in X_{i,j} \iff \sigma \in \tau_{i,j}H \iff \tau_{i,j}^{-1}\sigma \in H \iff \exists h \in H : \sigma = \tau_{i,j} \circ h$$

3. Suppose that $n \geq 4$. Then 1 < 2 < 3 < n. Call $\tau = (2\ 3)$ and $\sigma = (1\ 2)$. Clearly, $\tau \in H$. But $\sigma \tau \sigma^{-1} = (1\ 2)(2\ 3)(1\ 2) = (1\ 3) \notin H$, so that $\sigma H \sigma^{-1} \not\subseteq H$ and H is not normal.

If n = 3, any permutation $\sigma \in H$ is forced to fix 2 as well, so that H = 1, which is clearly a normal subgroup, since it is stable under conjugation.

- **2.** Let G be a group, and $H \leq G$ be a subgroup.
 - 1. Prove that the inversion map $i: G \to G$ induces a well-defined map $G/H \to H \setminus G$.
 - 2. Show that $|H\backslash G| = |G/H|$. When it is finite, we denote this cardinality by [G:H], and call it the *index* of H in G.
 - 3. Now suppose that K is an intermediate subgroup, $H \leq K \leq G$, and that H has finite index in G. Prove that [G:H] = [G:K][K:H] and in particular H has finite index in K and K has finite index in G. [Hint: Decompose G into cosets of H starting from decompositions of G into cosets of K and of K into cosets of H.]

Solution:

1. A map $\bar{i}: G/H \to H\backslash G$ induced by i should be defined by $gH \mapsto Hg^{-1}$. We prove that this is a well-defined map. We have

$$gH = g'H \iff g^{-1}g' \in H \iff Hg^{-1}g' = H \iff Hg^{-1} = Hg'^{-1},$$

which proves not only that \bar{i} is well-defined (by considering the implication \Rightarrow), but also that it is injective (by considering the converse implication).

- 2. The map \bar{i} from the previous point is surjective (since for each $g \in G$ we have $\bar{i}(g^{-1}H) = Hg$), and being it also injective as we saw, it is a bijection. Hence $|G/H| = |H \setminus G|$.
- 3. Since cosets form a partition of a group, we can choose (using AC) sets of indexes I and J and families of elements $(g_i)_{i\in I}$ and $(k_j)_{j\in J}$, with $g_i\in G$ and $k_j\in K$ such that we have disjoint unions

$$G = \bigcup_{i \in I} g_i K$$
 and $K = \bigcup_{i \in J} k_i H$.

Notice that |I| = [G:K] and |J| = [K:H]. Then

$$G = \bigcup_{i \in I} g_i \bigcup_{j \in J} k_j H = \bigcup_{(i,j) \in I \times J} g_i k_j H \quad (**),$$

and if we prove that this union is disjoint, then we will get $|I \times J| = [G : H]$. Suppose that $g_i k_j H \cap g_{i'} k_{j'} H$ is non-empty, then there exist $h, h' \in H$ such that $x = g_i k_j h = g_{i'} k_{j'} h'$. Since $k_j h, k_{j'} h' \in K$, we have $x \in g_i K \cap g_{i'} K \neq \emptyset$, so that i = i' by construction. Then $g_i k_j h = g_i k_{j'} h'$ gives $k_j h = k_{j'} h'$, and since this other element $g_i^{-1}x$ lies in $k_j H \cap k_{j'} H$, we also get j = j'. This proves that the union (**) is disjoint. Then $|I \times J| = [G : H] < \infty$ by hypothesis, and since I and J are not empty, set theory gives $|I|, |J| < \infty$, and

$$[G:H] = |I \times J| = |I| \cdot |J| = [G:K][K:H].$$

3. Given two groups H and K, we define on the cartesian product $H \times K$ the operation $(h,k)\cdot (h',k')=(hh',kk')$.

- 1. Show that $(H \times K, \cdot)$ is a group. It is called the *direct product* of the groups H and K.
- 2. Consider the subsets $H' = H \times \{1_K\}$ and $K' = \{1_H\} \times K$ of $H \times K$. Prove that they are normal subgroups of $H \times K$, and that each element $x \in H \times K$ can be written in an unique way as a product x = h'k', with $h' \in H'$ and $k' \in K'$.
- 3. Now suppose that G is a group, and suppose that H and K are normal subgroups of G such that $H \cap K = \{1_G\}$ and $HK = \{hk \in G | h \in H, k \in K\} = G$. Prove: G is isomorphic to $H \times K$.

Solution:

- 1. We have that the operation \cdot on $H \times K$ inherits associativity from associativity of the multiplications in H and K. The element $(1_G, 1_H)$ is readily checked to be neutral, and calling i_H and i_K the inversion maps of H and K, we obtain that $i_H \times i_K : H \times K \mapsto H \times K$, sending $(h,k) \mapsto (i_H(h),i_K(k))$ is an inversion map for $H \times K$. We can then conclude that $H \times K$ is a group with the operation \cdot just defined.
- 2. It is immediate to check that the projection maps $\pi_1: H \times K \to H$ and $\pi_2: H \times K \to K$ are group homomorphisms. Then $H' = H \times \{1_K\} = \ker(\pi_2)$ and $K' = \{1_H\} \times K = \ker(\pi_1)$ are normal subgroups of $H \times K$. For $(h,k) \in H \times K, h' = (h_0,1) \in H'$ and $k' = (1,k_0) \in K'$, it is clear that (h,k) = h'k' if and only if $h = h_0$ and $k = k_0$, so that there exists a unique decomposition of the required form.
- 3. First, let us prove that the elements of H commute with the elements of K. Let $h \in H$ and $k \in K$. The equality hk = kh is equivalent to the equality $hkh^{-1}k^{-1} = 1_G$. To show this, notice that $hkh^{-1} \in K$ (being K a normal subgroup) and $kh^{-1}k \in H$ (being H a normal subgroup), and that the left hand side lies in both H and K. Being the intersection of the two subgroups trivial, we get $hkh^{-1}k^{-1} = 1_G$. Hence elements in H commute with elements in K.

Now let us define the following map, where the group structure on $H \times K$ is defined as before:

$$\phi: H \times K \to G$$
$$(h, k) \mapsto hk$$

Then ϕ is a group homomorphism: for every $h,h'\in H$ and $k,k'\in K$ we have indeed

$$\phi((h,k)(h',k')) = \phi((hh',kk')) = hh'kk' \stackrel{*}{=} hkh'k' = \phi(h,k) \cdot \phi(h',k'),$$

where in passage * we used the fact that elements of H commute with elements of K.

Since HK = G by hypothesis, we have that ϕ is surjective. As concerns the kernel, notice that if hk = 1 for $h \in H$ and $k \in K$, then one has $h = k^{-1} \in H \cap K = \{1_G\}$, so that the $\ker(\phi) = \{1_G\}$. In conclusion, ϕ establish an isomorphism of groups between G and $H \times K$ as desired.

4. Let G be the subgroup of $GL_2(\mathbb{R})$ consisting of all matrices of the form $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ for $a, b \in \mathbb{R}$ (and $a \neq 0$). Find a normal subgroup H of G such that G/H is isomorphic to \mathbb{R}^{\times} , and write down an explicit isomorphism.

Solution:

G is easily checked to be a subgroup of $GL_2(\mathbb{R})$. In particular we have the formula

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a' & b' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} aa' & ab' + b \\ 0 & 1 \end{pmatrix}, \ \forall 0 \neq a, b \in \mathbb{R}.$$

This formula implies that the projection of the first entry $\pi: G \to \mathbb{R}^{\times}$, sending $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mapsto a$ is a group homomorphism. It is clearly surjective, so that $G/\ker(\pi)$ is isomorphic to \mathbb{R}^{\times} by the first isomorphism theorem. Hence we get that G/H is isomorphic to \mathbb{R}^{\times} for

$$H = \ker(\pi) = \left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) \middle| b \in \mathbb{R} \right\}$$

More explicitly, the map π factors as $\pi = \bar{\pi} \circ p$,

$$G \stackrel{p}{\longrightarrow} G/H \stackrel{\bar{\pi}}{\longrightarrow} \mathbb{R}^{\times}$$

where $p:g\mapsto gH$ is the quotient map and $\bar{\pi}$ is the unique group isomorphism sending $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} H\mapsto a.$

5. Let G be a group. Prove that Inn(G) is a normal subgroup of Aut(G).

Solution:

Recall that $\text{Inn}(G) = \{\sigma_c | c \in G\} \leq \text{Aut}(G)$, where $\sigma_c(x) := cxc^{-1}$. To prove that this subgroup is normal, look at the conjugacy class in Aut(G) of any σ_c . For $\tau \in \text{Aut}(G)$ and $c \in G$ we have

$$\forall x \in G, (\tau \sigma_c \tau^{-1})(x) = \tau(c\tau^{-1}(x)c^{-1}) = \tau(c)x\tau(c)^{-1},$$

so that $\tau \sigma_c \tau^{-1} = \sigma_{\tau(c)}$. This gives $\tau H \tau^{-1} \subseteq H$ for every $\tau \in \operatorname{Aut}(G)$, so that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.

- **6.** (*) Let G be a group. For $a, b \in G$, we define the commutator of a and b via $[a, b] := aba^{-1}b^{-1}$. Moreover, consider the commutator subgroup $[G, G] = \langle [a, b] \rangle_{a, b \in G}$.
 - 1. Show that the inverse of a commutator is a commutator, and that $[a,b]=1_G$ if and only if a and b commute.

- 2. Show that [G, G] is a normal subgroup of G.
- 3. Show that the quotient group G/[G,G] is abelian. We denote it by G^{ab} , and call it the *abelianization of G*.
- 4. Suppose that A is an abelian group, and that $\phi: G \to A$ is a group homomorphism. Prove: $[G, G] \subseteq \ker(\phi)$.
- 5. Deduce that for each $\phi: G \to A$ as above there exists a unique group homomorphism $\psi: G^{ab} \to A$ such that $\phi = \psi \circ \pi$, where π is the natural projection $G \to G^{ab}$.

Solution:

- 1. For each $a, b \in G$ we have that $[a, b][b, a] = aba^{-1}b^{-1}bab^{-1}a^{-1} = 1$, so that the inverse of the commutator [a, b] is [b, a]. Moreover, $[a, b] = 1_G$ if and only if $aba^{-1}b^{-1} = 1_G$, which is equivalent to ab = ba.
- 2. If H is a subgroup of G generated by a set S, one can prove that H is normal if and only if $gSg^{-1} \subseteq H$ for every $g \in G$, and check normality just on generators. But we will check normality directly on an element of the whole subgroup. Let $u \in H$ (Watch out: this does not mean that u is itself a commutator!), and $x \in G$. Then

$$xux^{-1} = uu^{-1}xux^{-1} = u[u^{-1}, x] \in [G, G].$$

In conclusion, [G, G] is normal in G.

- 3. For every $x, y \in G$, one has xy = [x, y]yx. Hence the classes of x and y in the quotient group G/[G, G] do commute.
- 4. For each $a, b \in G$ we obtain

$$\phi([a,b]) = \phi(a)\phi(b)\phi(a)^{-1}\phi(b)^{-1} = \phi(aba^{-1}b^{-1})[\phi(a),\phi(b)] = 1_A$$

since A is abelian. Then $[G,G] \subseteq \ker(\phi)$, since it is generated by elements in the kernel.

5. For each $g \in G$, we denote by $\bar{g} = \pi(g)$ the corresponding class in $G^{ab} = G/[G, G]$. If a map $\psi: G^{ab} \to A$ realises $\phi = \psi \circ \pi$, then $\psi(\pi(g)) = \phi(g)$, so that (being π surjective) there cannot exist two such maps which are different. To prove that $\psi(\bar{g}) = \phi(g)$ well defines a map ψ , suppose that $\bar{g}_1 = \bar{g}_2$. Then there exists $u \in [G, G]$ such that $g_1 = ug_2$, and this implies that $\phi(g_1) = \phi(ug_2) = \phi(u)\psi(g_2) = \phi(g_2)$ by applying the previous point. Hence ψ is a well-defined map, the unique one such that $\phi = \psi \circ \pi$. Finally, ψ is a group homomorphism:

$$\psi(\bar{g}\bar{h}) = \phi(gh) = \phi(g)\phi(h) = \psi(\bar{g})\psi(\bar{h}).$$

7. Let G be a group. Define $Z(G) = \{x \in G \mid xz = zx \text{ for all } z \in G\}$. Show that Z(G) is a normal subgroup of G (it is called the *center* of G).

Solution:

We have a group homomorphism $\gamma: G \to \operatorname{Aut}(G)$ sending $g \mapsto \sigma_g$, where σ_g is the conjugation by g, as defined in the previous exercise. It is indeed immediate to check on elements $x \in G$ that $\sigma_g \sigma_h = \sigma_{gh}$ for every $g, h \in G$. Then we get

$$\ker(\gamma) = \{ g \in G \mid \forall x \in X : gxg^{-1} = x \} = \{ g \in G \mid \forall x \in X : gx = xg \} = Z(G),$$

so that the center of G is a normal of subgroup of G.

This can also be proved directly. First, notice that $1_G \in Z(G)$. Moreover, for $g, h \in Z(G)$ we have that for every $x \in X$ one gets ghx = gxh = xgh, so that $gh \in Z(G)$. Also g^{-1} lies in the center: $g^{-1}x = (x^{-1}g)^{-1} = (gx^{-1})^{-1} = xg^{-1}$. This proves that $Z(G) \leq G$. Moreover, for every $g \in Z(G)$ and $x \in G$ one has $xgx^{-1} = gxx^{-1} = g$, so that $xZ(G)x^{-1} \subseteq Z(G)$ for every $x \in G$ and Z(G) is normal in G.