
D-MATH Algebra I HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 3

The content of the marked exercise (*) should be known for the exam.

Recall that for G a group and H a subgroup of G we call a left (resp., right) coset of H
any subset of G of the form Hg (resp., gH), with g ∈ G. We denote

G/H = {gH|g ∈ G} and H\G = {Hg|g ∈ G}

If H is a normal subgroup, we denote with G/H the quotient group.

1. For a fixed integer n ≥ 3, Consider H = {σ ∈ Sn|σ(1) = 1, σ(n) = n} ⊆ Sn, and
Xi,j := {σ ∈ Sn|σ(1) = i, σ(n) = j} ⊆ Sn, for i 6= j and 1 ≤ i, j ≤ n.

1. Prove that H is a subgroup of Sn, whose right cosets σH are precisely the Xi,j .

2. For σ ∈ Sn, give a necessary and sufficient condition for σ ∈ Xi,j .

3. For n ≥ 4, show that H is not a normal subgroup of Sn. What happens for n = 3?

Solution:

1. It is immediate to check that H is a subgroup: the identity fixes 1 and n, and if
σ, τ ∈ H, it is clear that both σ−1 and στ fix 1 and n.

Now take two couple of indexes i 6= j and i′ 6= j′, and suppose that σ ∈ Xi,j and
σ′ ∈ Xi′,j′ . Then one has

τ ∈ σH ⇐⇒ σ−1τ ∈ H ⇐⇒ σ−1τ(1) = 1 & σ−1τ(n) = n ⇐⇒
⇐⇒ τ(1) = σ(1) & τ(n) = σ(n) ⇐⇒ τ ∈ Xσ(1),σ(n)

so that σH = Xσ(1),σ(n) and the Xi,j are all the right cosets of H.

2. For i 6= j indexes, denote by τi,j the permutation which transpose 1 with i and n
with j, and fixes all the non-mentioned elements. Then τi,j(1) = i and τi,j(n) = j
by definition, so that Xi,j = τi,jH by the previous point. Then we have the
following equivalent conditions:

σ ∈ Xi,j ⇐⇒ σ ∈ τi,jH ⇐⇒ τ−1
i,j σ ∈ H ⇐⇒ ∃h ∈ H : σ = τi,j ◦ h

3. Suppose that n ≥ 4. Then 1 < 2 < 3 < n. Call τ = (2 3) and σ = (1 2). Clearly,
τ ∈ H. But στσ−1 = (1 2)(2 3)(1 2) = (1 3) 6∈ H, so that σHσ−1 6⊆ H and H is
not normal.

If n = 3, any permutation σ ∈ H is forced to fix 2 as well, so that H = 1, which
is clearly a normal subgroup, since it is stable under conjugation.
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2. Let G be a group, and H ≤ G be a subgroup.

1. Prove that the inversion map i : G→ G induces a well-defined map G/H → H\G.

2. Show that |H\G| = |G/H|. When it is finite, we denote this cardinality by [G : H],
and call it the index of H in G.

3. Now suppose that K is an intermediate subgroup, H ≤ K ≤ G, and that H has
finite index in G. Prove that [G : H] = [G : K][K : H] and in particular H has
finite index in K and K has finite index in G. [Hint : Decompose G into cosets of
H starting from decompositions of G into cosets of K and of K into cosets of H.]

Solution:

1. A map ī : G/H → H\G induced by i should be defined by gH 7→ Hg−1. We
prove that this is a well-defined map. We have

gH = g′H ⇐⇒ g−1g′ ∈ H ⇐⇒ Hg−1g′ = H ⇐⇒ Hg−1 = Hg′−1,

which proves not only that ī is well-defined (by considering the implication ⇒),
but also that it is injective (by considering the converse implication).

2. The map ī from the previous point is surjective (since for each g ∈ G we have
ī(g−1H) = Hg), and being it also injective as we saw, it is a bijection. Hence
|G/H| = |H\G|.

3. Since cosets form a partition of a group, we can choose (using AC) sets of indexes
I and J and families of elements (gi)i∈I and (kj)j∈J , with gi ∈ G and kj ∈ K such
that we have disjoint unions

G =
⋃
i∈I

giK and K =
⋃
j∈J

kjH.

Notice that |I| = [G : K] and |J | = [K : H]. Then

G =
⋃
i∈I

gi
⋃
j∈J

kjH =
⋃

(i,j)∈I×J

gikjH (∗∗),

and if we prove that this union is disjoint, then we will get |I × J | = [G : H].
Suppose that gikjH ∩ gi′kj′H is non-empty, then there exist h, h′ ∈ H such that
x = gikjh = gi′kj′h

′. Since kjh, kj′h
′ ∈ K, we have x ∈ giK ∩ gi′K 6= ∅, so that

i = i′ by construction. Then gikjh = gikj′h
′ gives kjh = kj′h

′, and since this other
element g−1

i x lies in kjH ∩ kj′H, we also get j = j′. This proves that the union
(∗∗) is disjoint. Then |I × J | = [G : H] <∞ by hypothesis, and since I and J are
not empty, set theory gives |I|, |J | <∞, and

[G : H] = |I × J | = |I| · |J | = [G : K][K : H].

3. Given two groups H and K, we define on the cartesian product H ×K the operation
(h, k) · (h′, k′) = (hh′, kk′).
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1. Show that (H ×K, ·) is a group. It is called the direct product of the groups H
and K.

2. Consider the subsets H ′ = H × {1K} and K ′ = {1H} ×K of H ×K. Prove that
they are normal subgroups of H ×K, and that each element x ∈ H ×K can be
written in an unique way as a product x = h′k′, with h′ ∈ H ′ and k′ ∈ K ′.

3. Now suppose that G is a group, and suppose that H and K are normal subgroups
of G such that H ∩K = {1G} and HK = {hk ∈ G|h ∈ H, k ∈ K} = G. Prove: G
is isomorphic to H ×K.

Solution:

1. We have that the operation · on H ×K inherits associativity from associativity
of the multiplications in H and K. The element (1G, 1H) is readily checked to be
neutral, and calling iH and iK the inversion maps of H and K, we obtain that
iH × iK : H ×K 7→ H ×K, sending (h, k) 7→ (iH(h), iK(k)) is an inversion map
for H ×K. We can then conclude that H ×K is a group with the operation · just
defined.

2. It is immediate to check that the projection maps π1 : H × K → H and π2 :
H × K → K are group homomorphisms. Then H ′ = H × {1K} = ker(π2) and
K ′ = {1H} ×K = ker(π1) are normal subgroups of H ×K.

For (h, k) ∈ H × K,h′ = (h0, 1) ∈ H ′ and k′ = (1, k0) ∈ K ′, it is clear that
(h, k) = h′k′ if and only if h = h0 and k = k0, so that there exists a unique
decomposition of the required form.

3. First, let us prove that the elements of H commute with the elements of K. Let h ∈
H and k ∈ K. The equality hk = kh is equivalent to the equality hkh−1k−1 = 1G.
To show this, notice that hkh−1 ∈ K (being K a normal subgroup) and kh−1k ∈ H
(being H a normal subgroup), and that the left hand side lies in both H and K.
Being the intersection of the two subgroups trivial, we get hkh−1k−1 = 1G. Hence
elements in H commute with elements in K.

Now let us define the following map, where the group structure on H×K is defined
as before:

φ : H ×K → G

(h, k) 7→ hk

Then φ is a group homomorphism: for every h, h′ ∈ H and k, k′ ∈ K we have
indeed

φ((h, k)(h′, k′)) = φ((hh′, kk′)) = hh′kk′
∗
= hkh′k′ = φ(h, k) · φ(h′, k′),

where in passage ∗ we used the fact that elements of H commute with elements
of K.

Since HK = G by hypothesis, we have that φ is surjective. As concerns the kernel,
notice that if hk = 1 for h ∈ H and k ∈ K, then one has h = k−1 ∈ H∩K = {1G},
so that the ker(φ) = {1G}. In conclusion, φ establish an isomorphism of groups
between G and H ×K as desired.
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4. Let G be the subgroup of GL2(R) consisting of all matrices of the form

(
a b
0 1

)
for

a, b ∈ R (and a 6= 0). Find a normal subgroup H of G such that G/H is isomorphic
to R×, and write down an explicit isomorphism.

Solution:

G is easily checked to be a subgroup of GL2(R). In particular we have the formula(
a b
0 1

)(
a′ b′

0 1

)
=

(
aa′ ab′ + b
0 1

)
, ∀0 6= a, b ∈ R.

This formula implies that the projection of the first entry π : G → R
×, sending(

a b
0 1

)
7→ a is a group homomorphism. It is clearly surjective, so that G/ ker(π)

is isomorphic to R× by the first isomorphism theorem. Hence we get that G/H is
isomorphic to R× for

H = ker(π) =

{(
1 b
0 1

) ∣∣∣b ∈ R}
More explicitly, the map π factors as π = π̄ ◦ p,

G
p−→ G/H

π̄−→ R×

where p : g 7→ gH is the quotient map and π̄ is the unique group isomorphism sending(
a b
0 1

)
H 7→ a.

5. Let G be a group. Prove that Inn(G) is a normal subgroup of Aut(G).

Solution:

Recall that Inn(G) = {σc|c ∈ G} ≤ Aut(G), where σc(x) := cxc−1. To prove that this
subgroup is normal, look at the conjugacy class in Aut(G) of any σc. For τ ∈ Aut(G)
and c ∈ G we have

∀x ∈ G, (τσcτ−1)(x) = τ(cτ−1(x)c−1) = τ(c)xτ(c)−1,

so that τσcτ
−1 = στ(c). This gives τHτ−1 ⊆ H for every τ ∈ Aut(G), so that Inn(G)

is a normal subgroup of Aut(G).

6. (*) Let G be a group. For a, b ∈ G, we define the commutator of a and b via [a, b] :=
aba−1b−1. Moreover, consider the commutator subgroup [G,G] = 〈[a, b]〉a,b∈G.

1. Show that the inverse of a commutator is a commutator, and that [a, b] = 1G if
and only if a and b commute.
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2. Show that [G,G] is a normal subgroup of G.

3. Show that the quotient group G/[G,G] is abelian. We denote it by Gab, and call
it the abelianization of G.

4. Suppose that A is an abelian group, and that φ : G→ A is a group homomorphism.
Prove: [G,G] ⊆ ker(φ).

5. Deduce that for each φ : G → A as above there exists a unique group homo-
morphism ψ : Gab → A such that φ = ψ ◦ π, where π is the natural projection
G→ Gab.

Solution:

1. For each a, b ∈ G we have that [a, b][b, a] = aba−1b−1bab−1a−1 = 1, so that the
inverse of the commutator [a, b] is [b, a]. Moreover, [a, b] = 1G if and only if
aba−1b−1 = 1G, which is equivalent to ab = ba.

2. If H is a subgroup of G generated by a set S, one can prove that H is normal if
and only if gSg−1 ⊆ H for every g ∈ G, and check normality just on generators.
But we will check normality directly on an element of the whole subgroup.

Let u ∈ H (Watch out: this does not mean that u is itself a commutator!), and
x ∈ G. Then

xux−1 = uu−1xux−1 = u[u−1, x] ∈ [G,G].

In conclusion, [G,G] is normal in G.

3. For every x, y ∈ G, one has xy = [x, y]yx. Hence the classes of x and y in the
quotient group G/[G,G] do commute.

4. For each a, b ∈ G we obtain

φ([a, b]) = φ(a)φ(b)φ(a)−1φ(b)−1 = φ(aba−1b−1)[φ(a), φ(b)] = 1A

since A is abelian. Then [G,G] ⊆ ker(φ), since it is generated by elements in the
kernel.

5. For each g ∈ G, we denote by ḡ = π(g) the corresponding class in Gab = G/[G,G].
If a map ψ : Gab → A realises φ = ψ ◦ π, then ψ(π(g)) = φ(g), so that (being
π surjective) there cannot exist two such maps which are different. To prove
that ψ(ḡ) = φ(g) well defines a map ψ, suppose that ḡ1 = ḡ2. Then there exists
u ∈ [G,G] such that g1 = ug2, and this implies that φ(g1) = φ(ug2) = φ(u)ψ(g2) =
φ(g2) by applying the previous point. Hence ψ is a well-defined map, the unique
one such that φ = ψ ◦ π. Finally, ψ is a group homomorphism:

ψ(ḡh̄) = φ(gh) = φ(g)φ(h) = ψ(ḡ)ψ(h̄).

7. Let G be a group. Define Z(G) = {x ∈ G | xz = zx for all z ∈ G}. Show that Z(G)
is a normal subgroup of G (it is called the center of G).

Solution:
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We have a group homomorphism γ : G → Aut(G) sending g 7→ σg, where σg is the
conjugation by g, as defined in the previous exercise. It is indeed immediate to check
on elements x ∈ G that σgσh = σgh for every g, h ∈ G. Then we get

ker(γ) = {g ∈ G | ∀x ∈ X : gxg−1 = x} = {g ∈ G | ∀x ∈ X : gx = xg} = Z(G),

so that the center of G is a normal of subgroup of G.

This can also be proved directly. First, notice that 1G ∈ Z(G). Moreover, for g, h ∈
Z(G) we have that for every x ∈ X one gets ghx = gxh = xgh, so that gh ∈ Z(G).
Also g−1 lies in the center: g−1x = (x−1g)−1 = (gx−1)−1 = xg−1. This proves that
Z(G) ≤ G. Moreover, for every g ∈ Z(G) and x ∈ G one has xgx−1 = gxx−1 = g, so
that xZ(G)x−1 ⊆ Z(G) for every x ∈ G and Z(G) is normal in G.


