Algebra I HS 14

Exercise sheet 5

The content of the marked exercises (*) should be known for the exam.

- **1.** Let G be a group, and consider the set of maps $C(G) = \{f : G \to \mathbb{C}\}$.
 - 1. Prove that defining $(g \cdot f)(x) = f(xg)$, for every $g, x \in G$ and $f \in C(G)$ we obtain an action of G on C(G). Is it faithful?
 - 2. If $|G| \neq 1$, find a non-trivial invariant subset of C(G).
- **2.** Let G be a group and suppose there is an action of G on a set X. For $H \subseteq G$, define $X^H = \{x \in X | \forall h \in H, h \cdot x = x\}$. Prove: if $H \subseteq G$, then the action of G on X induces an action of G/H on X^H .
- **3.** Let G act transitively on a finite set X, with $|X| \ge 2$. Show that there exists at least one element of $g \in G$ such that g has no fixed point.
- **4.** Let G be a group acting on X. Show that the stabilizers of two elements in the same orbit are conjugate. What happens if for $x \in X$ one has $Stab_G(x) \subseteq G$?
- **5.** Consider the group $G = GL_n(\mathbb{R})$, where n is a positive integer, and let H be the subgroup consisting of diagonal matrices.
 - 1. Suppose that $g \in H$ has distinct eigenvalues. Compute $C_G(g)$. Try to generalize this for $g \in G$ a (non-necessarily diagonal) diagonalizable matrix with distinct eigenvalues.
 - 2. Now suppose that n=2. Compute $N_G(H)$ and show that $N_G(N_G(H))=N_G(H)$.
- **6.** Let G be a finite group. Prove that any subgroup of index equal to the smallest prime dividing |G| is normal. [Hint: Consider an action of G on the coset space with respect to the subgroup, and find its kernel.]

- 7. (*) We want to give a proof of Sylow theorems. Given a prime number p and a finite group G, we call p-subgroup of G any subgroup of order equal to a power of p. We call p-Sylow subgroup of a finite group G any subgroup of order equal to the maximal power of p dividing |G|. (For instance, if $G = S_4$, then a 2-Sylow subgroup of G is a subgroup of order 8, and the only 5-Sylow subgroup is $\{1_G\}$).
 - 1. Let G be a finite group, and write $G = p^n h$, with p a prime number, and n, h positive integers such that p does not divide h. Consider the set $\mathcal{P} = \{I \subseteq G : |I| = p^n\}$:
 - a) Prove that the following defines an action of G on \mathcal{P} :

$$\forall g \in G, \forall I \in \mathcal{P}, g \cdot I := gI = \{gi | i \in I\};$$

- b) Prove that p does not divide $|\mathcal{P}|$, and deduce that there exists an orbit $\mathcal{O} \subseteq \mathcal{P}$ of the action above whose cardinality is not divisible by p. Deduce that $|\mathcal{O}|$ divides h;
- c) Prove that $\bigcup_{S\in\mathcal{O}} S = G$, and deduce from this that $|\mathcal{O}| \geq m$. Find the cardinality of $H = \operatorname{Stab}_G(S_0)$, for $S_0 \in \mathcal{O}$.

Conclude: any finite group G has a p-Sylow subgroup (First Sylow Theorem).

- 2. Second Sylow Theorem. Let P be a p-Sylow subgroup of G and Q a p-subgroup of G.
 - d) Prove that the following defines an action of Q on G/P:

$$\forall q \in Q, \forall g \in G, q \cdot gP := (qg)P;$$

e) Prove that the cardinality of any orbit is 1 or is divisible by p. Deduce that there is a fixed point $gP \in G/P$, and that P contains a conjugate of Q.

Conclude: p-Sylow subgroups of G are conjugate in G (Second Sylow Theorem).

- 3. Let n_p be the number of p-Sylow subgroup of G, and P a p-Sylow subgroup of G.
 - f) Prove that P acts on $X := \{Q \text{ p-Sylow in } G\}$ by conjugation;
 - g) Prove that the action above has precisely one fixed point, and that p divides the size of the other orbits.

Conclude: p divides $n_p - 1$, that is, $n_p \equiv 1 \pmod{p}$ (Third Sylow Theorem).

Due to: 23 October 2014, 3 pm.