
D-MATH Algebra I HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 7

The content of the marked exercises (*) should be known for the exam.

1. (*) Let R be a ring. Similarly as for groups, given two R-linear maps α : L→M and
β : M → N we say that

L
α→M

β→ N

is an exact sequence of R-modules if Im(α) = ker(β), and given

(∗∗) · · · −→Mn−2
αn−2−→ Mn−1

αn−1−→ Mn
αn−→Mn+1

αn+1−→ Mn+2 −→ · · ·

we say that (∗∗) is an exact sequence if Mi−1
αi−1−→ Mi

αi−→Mi+1 is an exact sequence for
every i. We call a short exact sequence of R-modules any exact sequence of R-modules
of the form

0→ L
α→M

β→ N → 0.

1. Show that in the exact sequence above N is determined, up to isomorphism, by
the map α.

2. Find a short exact sequence as above, with R = Z, L = Z, M = Z⊕
⊕∞

i=1Z/2Z,
and α(n) = 2n+ 0.

3. Find a short exact sequence as above, with R = R, L = M ⊕M and M 6= 0.

Solution:

1. Since by exactness we have Im(β) = ker(N → 0) = N and ker(β) = Im(α), the
First Isomorphism Theorem applied to the map β gives M/ Im(α) = M/ ker(β) ∼=
Im(β) = N , so that N is determined, up to isomorphism, by the map α. Notice
that ker(α) = Im(0→ L) = 0, so that α is injective and L ∼= Im(α). [Calling β̄ the
isomorphism M/ Im(α) → N we just used, the First Isomorphism Theorems can
be explicited by saying that β̄(m+ Im(α)) = β(m), so that β = β̄ ◦ πIm(α), where
πIm(α) is the canonical projection M →M/ Im(α). Then we have an isomorphism
of exact sequences, in the sense that the two squares in the following diagram
commute:

0 - L
α
- M

π
- M/ Im(α) - 0

0 - L

idL
? α

- M

idM
? β

- N

β̄′

?
- 0

This means that the isomorphism β̄′ is determined by β and viceversa.]
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2. By previous point, we can take N ∼= M/ Im(α). We have

(∗) M/ Im(α) ∼=
Z⊕

⊕∞
i=1Z/2Z

2Z⊕ 0
∼= Z/2Z⊕

∞⊕
i=1

Z/2Z ∼=
∞⊕
i=1

Z/2Z =: N

The second isomorphism is just a translation by one of the index, while the first
isomorphism comes from the more general fact that given R-modules Ai, i ∈ I
and submodules A′i ≤ Ai, the following is a surjective R-linear map:

(∗∗)
⊕
i∈I

Ai →
⊕
i∈I

(Ai/A
′
i)

ai1 + · · ·+ aim 7→ (ai1 +Ai1) + · · ·+ (aim +Aim)

whose kernel is precisely
⊕

i∈I A
′
i.

Composing the resulting isomorphism (∗) with the natural projectionM →M/ Im(α)
we obtain an R-linear map (notice that every element in a infinite direct sum is
always equal to a finite sum of elements in the direct summands):

β : M = Z⊕
∞⊕
i=1

Z/2Z→
∞⊕
i=1

Z/2Z = N

t+ a1 + a2 + · · · ak 7→ b1 + b2 + · · ·+ bk+1, where

b1 = t and bi−1 = ai for i = 1, . . . , k + 1

With this β and N , we have exactness by construction.

3. Since we want to construct an injection of non-zero R-vector spaces M⊕M →M ,
we need 0 < 2 dimR(M) = dimR(M ⊕ M) ≤ dimR(M), which can only hold
when M is infinite dimensional. We then suppose that M =

⊕
i∈ZR · ei, and

by taking two copies (e′i)i∈Z, (e
′′
i )i∈Z of the basis (e′i)i∈Z we can write M ⊕M =⊕

i∈ZR · e′i ⊕
⊕

i∈ZR · e′′i .
Then we can define many R-linear injective maps α : M ⊕ M → M , with a
resulting N that can vary. Recall that defining a R-linear map of R-vector space
is equivalent to choosing images for a basis of the domain.

a) Define α by imposing α(e′i) = e3i+1 and α(e′′i ) = e3i+2. Then Im(α) =
⊕i∈Z\3ZR · ei, so that by the isomorphism (∗∗) above we have M/ ker(α) ∼=
⊕i∈3ZR · ei, which is easily seen to be isomorphic to M by mapping e3k to ek.
Hence one can take N = M , and the surjective R-linear map

β : M → N

e3k 7→ ek

eh 7→ 0 if 3 - h.

Then Im(α) = ker(β), and we have a short exact sequence

0→M ⊕M α→M
β→M → 0.

See next page!



b) Define α by imposing α(e′i) = e2i and α(e′′i ) = e2i+1. Then Im(α) = M ,
meaning that α is an isomorphism, and by Point 1 we get N = 0, so that we
have a short exact sequence

0→M ⊕M α→M
β→ 0→ 0.

c) Let n be a positive integer and take bijections γ : Z→ Z≤0 and χ : Z→ Z>n
- this can be done by “counting” (with non-positive integers and with integers
bigger than n) the elements of Z. Then define α by imposing α(e′i) = eγ(i)
and α(e′′i ) = eχ(i), so that α is injective and Im(α) = ⊕i∈Z≤0∪Z>nR · ei and
the isomorphism (∗∗) above gives M/ Im(α) ∼=

⊕n
i=1R · ei =: Rn. So we take

N = Rn and define β : M → N mapping ek 7→ ek if 1 ≤ k ≤ n and eh 7→ 0
else. Then we have a short exact sequence

0→M ⊕M α→M
β→ Rn → 0.

2. Let R be a ring and M be an R-module. Let N ≤ M and L ≤ M , meaning that N
and L are R-submodules of M .

Show that N ∩ L ≤ N , and that L ≤ N + L ≤ M , and prove that there is an
isomorphism N/(N ∩ L)

∼−→ (N + L)/L.

Solution:

This exercise is very similar to Exercise 2 from exercise sheet 4, which we will assume
as already proven. All our R-modules are in particular abelian groups, and at level of
the underlying abelian groups everything is proven.

To prove that N ∩ L ≤ N and L ≤ (N + L) ≤M , first notice that this is true at level
of abelian groups (that is, those statement are true giving to “≤” the meaning of “is a
subgroup of”), so that we only need to check that they are stable subsets under scalar
multiplication.

• N ∩ L ≤ N : If x ∈ N ∩ L and r ∈ R, then we have r · x ∈ N and r · x ∈ L, since
N and L are submodules of M , so that r · x ∈ N ∩ L;

• L ≤ N + L is trivial being L ≤M ;

• N +L ≤M : every element x ∈ N +L can be written as x = n+ l for some n ∈ N
and l ∈ L, so that ∀r ∈ R we have r · x = r · (n + l) = r · n + r · l ∈ N + L by
definition, being r · n ∈ N and r · l ∈ L.

Now, define the map

N → (N + L)/L

n 7→ n+ L.

This map is easily seen to be R-linear, and it is surjective because elements in the
codomain are all of the form (n′ + l′) + L = n′ + L for n′ ∈ N and l′ ∈ L. Finally,
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we have that l + L = 0(N+L)/L if and only if l ∈ L, so that the kernel of the map is
N ∩ L. Then the First Isomorphism Theorem for R-modules gives an isomorphism
N/(N ∩ L)

∼−→ (N + L)/L.

3. Let R 6= 0 be a commutative ring. We say that a ∈ R is a zero-divisor if there exists
b ∈ R such that b 6= 0 and ab = 0. We say that a ∈ R is regular if a is not a zero-divisor.

1. Prove that invertible elements in R are regular. Is the converse true?

2. Let Rreg = {a ∈ R : a is regular}. Prove that Rreg contains 1R and that it is
stable under multiplication. This is also phrased by saying that the Rreg is a
multiplicative subset of R.

3. Let now M be an R-module. Define Mtor = {m ∈ M |∃r ∈ Rreg : r ·m = 0M}.
Prove that Mtor is a submodule of M . It is called the torsion submodule of M .

4. We say that a module N is torsion-free if Ntor = 0. Prove: for every R-module
M , the module M/Mtor is torsion-free.

5. Find the torsion submodule of the Z-module M = R/Z. What is M/Mtor?

Solution:

1. First, observe that r ∈ R is regular if and only if ru = 0 with u ∈ R implies u = 0.

Let r ∈ R be a unit, with inverse s. If ru = 0 for some u ∈ R, then 0 = 0 · s =
(ru)s = (rs)u = u, so that u = 0. Hence every invertible element in R is regular.

The converse is not true in general. For instance, if R = Z, then 2 is regular, but
it is not invertible.

2. We have that 1R is regular, because 1R · r = 0 implies r = 0. Now suppose that
r, s ∈ Rreg. Then rs is also regular, since if rsu = 0 for some u ∈ R, then being r
regular we get su = 0, and being s regular we can conclude u = 0.

3. Let m,n ∈Mtor, with r ·m = s ·n = 0M for some r, s ∈ Rreg. Then rs · (m+n) =
(rs)·m+(rs)·n = s·(r ·m)+r ·(s·n) = 0M , and being rs ∈ Rreg by previous point,
we have m+n ∈Mtor. Now for any a ∈ R we also have r ·(a ·m) = a ·(r ·m) = 0M ,
so that a ·m ∈ Mtor as well. We can then conclude that Mtor is a submodule of
M .

4. Suppose that m + Mtor ∈ (M/Mtor)tor. Then there exists r ∈ Rreg such that
0M/Mtor

= r · (m+Mtor) = r ·m+Mtor, which is equivalent to r ·m ∈Mtor. Hence
there exists s ∈ Rreg such that s · (r ·m) = 0M . Then (sr) ·m = 0M , and since
sr ∈ Rreg by Point 2, we can conclude that m ∈Mtor, so that m+Mtor = 0M/Mtor

.
Hence M/Mtor is torsion-free.

5. For R = Z and M = R/Z, we claim that Mtor = Q/Z = {q + Z|q ∈ Q} ≤ R/Z.
To prove the inclusion “⊆”, suppose that α+Z ∈Mtor. This means that for some
non-zero n ∈ Z we have nα = m ∈ Z, so that α = m/n is rational by definition.
Conversely, if q ∈ Q, there exists a positive integer k such that kq ∈ Z, so that
k · (q + Z) = Z.
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Now we have that
M

Mtor
=
R/Z

Q/Z
∼= R/Q,

where the last isomorphism is due to the Third Isomorphism Theorem stated
below (applied with R = Z, A = Z, B = Q and C = R).

Third Isomorphism Theorem. Let R be a ring and A ≤ B ≤ C inclusions of
R-modules. Then B/A ≤ C/A, and there is an isomorphism

C/A

B/A
∼= C/B.

Proof: The inclusion of quotient modules is clear by definition. For the isomorphism,
consider the map C → C/A

B/A sending c 7→ (c + A) + (B/A). It is easily seen to be a
surjective R-linear map, whose kernel is B. Then the isomorphism follows from First
Isomorphism Theorem.

4. (*) Let R be a commutative ring. If M and N are R-modules, we define HomR(M,N)
as the set of R-linear maps M → N . It is easily seen to be an R-module by defining

(f+g)(m) = f(m)+g(m), (a·f)(m) := a·(f(m)), ∀f, g ∈ HomR(M,N), a ∈ R, m ∈M.

1. Let N be an R-module. For every R-linear map f : M1 →M2, define

f∗ : HomR(M2, N)→ HomR(M1, N)

g 7→ g ◦ f.

Prove that f∗ is also an R-linear map, and that we have the following properties:

• (f2 ◦ f1)∗ = f∗1 ◦ f∗2 , for every couple of R-linear maps f1 : M1 → M2 and
f2 : M2 →M3;

• id∗M = idHomR(M,N) for every R-module M .

2. Define a natural map HomR(M1⊕M2, N)→ HomR(M1, N)⊕HomR(M2, N) and
prove that it is an isomorphism of R-modules.

3. Prove that for any exact sequence of R-modules A → B → C → 0, one has that
the corresponding

0→ HomR(C,N)→ HomR(B,N)→ HomR(A,N)

is also an exact sequence of modules.

4. Let A = EndR(M), where M is a countably infinite dimensional R-vector space
(i.e., M has an R-basis B = (ei)i∈Z>0). Prove that A2 is isomorphic to A as an A-
module. [Hint: First, prove that M ∼= M⊕M as R-vector spaces.] What happens
if M is finite dimensional? (What if M is uncountably infinite dimensional?)

Solution (sketch):
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1. To prove that f∗ is R-linear it is enough to check on elements of M1 the equalities
of maps (g + h) ◦ f = (g ◦ f) + (h ◦ f) and (r · f) ◦ g = r · (f ◦ g), where
g, h ∈ HomR(M2, N) and r ∈ R.

The property (f2◦f1)∗ = f∗1 ◦f∗2 , for linear maps f1 : M1 →M2 and f2 : M2 →M3

is easily checked on elements g ∈ HomR(M2, N). Analogously one can check that
id∗M = idHomR(M,N).

2. For i = 1, 2, denote by ei the canonical inclusion map Mi 7→ M1 ⊕M2 and by pi
the canonical projection map pi : M1 ⊕M2 →M1. In the same way, denote by di
the canonical inclusion di : HomR(Mi, N) → HomR(M1, N)⊕ HomR(M2, N) and
by qi the projection HomR(M1, N)⊕HomR(M2, N)→ HomR(Mi, N).

Define a map ψ : HomR(M1 ⊕M2, N)→ HomR(M1, N)⊕HomR(M2, N) sending
g 7→ e∗1(g) + e∗2(g). To be precise, we can write ψ = d1 ◦ e∗1 + d2 ◦ e∗2, and deduce
that ψ is R-linear (why?).

Also, define ϕ : HomR(M1, N) ⊕ HomR(M2, N) → HomR(M1 ⊕M2, N), sending
f = f1 + f2, where fi ∈ HomR(Mi, N), to p∗1(f1) + p∗2(f2). Formally, ϕ = p∗1 ◦ q1 +
p∗2 ◦ q2.
Now ψ ◦ϕ = (

∑
i=1,2 di ◦e∗i )◦ (

∑
j=1,2 p

∗
j ◦ qj). Using linearity, we need to consider

compositions of the form e∗i ◦p∗j = (pj ◦ei)∗. By Point 1, this can be seen to be the
zero map for i 6= j, and an identity map for i = j. Then ψ ◦ ϕ = d1 ◦ q1 + d2 ◦ q2,
which is the identity of HomR(M1, N)⊕HomR(M2, N) (check!).

Conversely, ϕ◦ψ = (
∑

j=1,2 p
∗
j ◦qj)◦ (

∑
i=1,2 di ◦e∗i ), and considering that qj ◦di is

zero if i 6= j and an identity otherwise, using Point 1 we get ϕ◦ψ = (e1◦p1+e2◦p2)∗,
which turns out (how?) to be the identity of HomR(M1 ⊕M2, N).

Hence ϕ and ψ are each others inverses, and we have proven the desired isomor-
phism.

3. In the given exact sequence, call the maps f : A→ B and g : B → C. We have to
prove that g∗ is injective, and that Im(g∗) = ker(f∗).

a) g∗ is injective: Suppose that γ ∈ ker(g∗). This means that γ : C → N is an
R-linear map such that γ ◦ g is the zero map B → N . But g is surjective, so
that for every c ∈ C we have that there exists b ∈ B such that c = g(b), and
γ(c) = (γ ◦ g)(b) = 0(b) = 0, and γ = 0. Hence g∗ is injective.

b) Im(g∗) ⊆ ker(f∗): Suppose that β ∈ Im(g∗). This means that β = γ ◦ g for
some γ ∈ HomR(C,N). Then f∗(β) = β ◦ f = α ◦ g ◦ f = 0 since g ◦ f = 0, so
that β ∈ ker(f∗), proving the desired inclusion.

c) Im(g∗) ⊇ ker(f∗): Suppose that β ∈ ker(f∗), that is, β ∈ HomR(B,N) is
such that β ◦ f is the zero map A → N . We want to define an R-linear map
γ : C → N such that γ ◦ g = g∗(γ) = β. For c ∈ C, by surjectivity of
g there exists b ∈ B such that g(b) = c, and we try to define γ(c) = β(b).
This can be seen to be a good definition: if g(b) = g(b′), then g(b − b′) = 0,
so that b − b′ ∈ ker(g) = Im(f) and b − b′ = f(a) for some a ∈ A. Then
β(b) − β(b′) = β(b − b′) = (β ◦ f)(a) = 0 by hypothesis. Hence γ is well
defined, and it is easily seen to be a linear map by chosing, for each R-linear
combination c = r1 · c1 + r2 · c2 of elements c1, c2 ∈ C some counterimages b1
and b2 via g of c1 and c2, and noticing that g(r1 · b1 + r2 · b2) = c, so that
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γ(c) = β(r1 · b1 + r2 · b2) = r1 · β(b1) + r2 · β(b2) = r1 · γ(c1) + r2 · γ(c2).
Then g∗(γ) = β follows directly from the definition of γ, proving the desired
inclusion.

4. • Suppose that M is a countably infinite dimensional R-vector space, with M =⊕
i∈ZR · ei. Then part 3.b of Exercise 1 gives an isomorphism M ⊕M ϑ→ M

and Point 1 can be used to prove that ϑ∗ is also an isomorphism, so that

A = HomR(M,M)
ϑ∗→ HomR(M ⊕M,M)

ψ→ (HomR(M,M))2 = A2,

is a chain of isomorphisms of R-vector spaces, where ψ is the isomorphism
from Point 2 (with M1 = M2 = N = M).
Denoting the isomorphism above as ξ : A → A2, we want to prove that ξ is
also an isomorphism of A-module. To do so, we decompose ξ = d1 ◦ξ1+d2 ◦ξ2,
with ξi : A→ A, and establish A-linearity by proving that for f, g ∈ A one has
the equality () in the following:

d1 ◦ ξ1(f ◦g) +d2 ◦ ξ2(f ◦g) = ξ(f ◦g)
(∗)
= f ◦ ξ(g) = d1 ◦f ◦ ξ1(g) +d2 ◦f ◦ ξ2(g),

where in the last equality we used the A-module structure of A2 (A acts by
composition on the left in both entries of A2). To check (∗) above, we prove
that the first and the last compositions are equal, and this is true of course if
di ◦ ξi(f ◦ g) = di ◦ f ◦ ξi(g) for both i = 1, 2. Notice that ξi = qi ◦ ξ, so that
using the definition of ξ and ψ, we get:

di ◦ ξi(f ◦ g) = di ◦ qi ◦ (d1 ◦ e∗1 + d2 ◦ e∗2) ◦ ϑ∗(f ◦ g) = di ◦ e∗i ◦ ϑ∗(f ◦ g) =

= di ◦ f ◦ g ◦ ϑ ◦ ei = di ◦ f ◦ e∗i ◦ ϑ∗(g) = · · · =
= di ◦ f ◦ ξi(g),

and we can conclude the proof.

• If M is zero, then the result is trivially true, being A = 0. If M 6= 0 is finite
dimensional, with k = dimR(M), then by basic linear algebra we have an
isomorphism of R-vector spaces A = HomR(M,M) ∼= Mk,k(R) ∼= Rk2 , so that

A2 ∼= R2k2 and we cannot have an isomorphism A ∼= A2, the dimensions over
R being distinct.

• Finally, if M is an infinite dimensional R-vector space, one can prove that still
M ⊕M ∼= M , and repeat the same argument used for M countably infinite
dimensional (where the only information about ϑ that we used is that it is
an isomorphism of R-vector spaces). First, recall that any vector space has a
basis (this can be proven using Zorn’s Lemma). Then let M =

∑
i∈I eiR. We

can write M ⊕M =
∑

i∈I∪I′ eiM , where we take a set I ′ disjoint with I with
|I| = |I ′|. Then giving an isomorphism of R-vector spaces M ⊕M ∼= M is
equivalent to giving a bijection I → I t I ′, which is equivalent to proving that
I = J ∪K, for some J,K ⊆ I with I ∩K = ∅ and |J | = |K| = |I|. To prove
this, it is enough to prove that I is a disjoint union of subsets of countable
cardinality [then one can split all those countable subsets Nr into two disjoint
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parts Jr,Kr of countable cardinality, and take J = ∪rJr and K = ∪rKr, which
can be easily proven to be of the same cardinality of I].
To prove that I is a disjoint union of subsets of countable cardinality, again one
can apply Zorn’s Lemma: consider the following poset of families of disjoint
countable subsets:

S = {{Sα}α∈A|∀α 6= β ∈ A, Sα ⊆ I, |Sα| = |Z|, Sα ∩ Sβ = ∅},

order by inclusion ⊆ (of families of countable subsets). Being I infinite, we have
a copy Z of Z in I, so that {Z} ∈ S 6= ∅. Now suppose we are given a chain
of elements (SK)K = ({Sα}α∈K)K ⊆ S. Then it is bounded by B =

⋃
K SK .

Indeed, B is a family of countable subsets of I and if two of those subsets
Sα1 , Sα2 are not disjoint, suppose that they belong respectively to SK1 and
SK2 (with αi ∈ Ki). Since (SK)K is a chain we have SK1 , SK2 ⊆ SK3 for some
K3, so that SK3 ∈ S contains both Sα1 and Sα2 , contradiction. Then there
is a maximal collection of countable disjoint subsets {Sr}r∈T , with Sr ⊆ I,
which means that the subset of the remaining elements U := I \

⋃
r∈T is finite

(else, we could add another disjoint countable subset to the maximal collection,
contradiction). Then we can choose r0 ∈ T and replace Sr0 with Sr0∪U (which
is still countable), and obtain a disjoint union of countable subsets of I.


