D-MATH Algebra 1 HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 7

The content of the marked exercises (*) should be known for the exam.

1. (*) Let R be a ring. Similarly as for groups, given two R-linear maps « : L — M and
B : M — N we say that

L3S MEN

is an exact sequence of R-modules if Im(a) = ker(3), and given

Qi — Qp— n [
(k%) oo = My_o == My == My 2% My~ My — - -

we say that (xx) is an exact sequence if M;_; i M; N M, is an exact sequence for
every i. We call a short exact sequence of R-modules any exact sequence of R-modules
of the form

3.

05L3MA NS

. Show that in the exact sequence above N is determined, up to isomorphism, by

the map a.

. Find a short exact sequence as above, with R =7, L=7, M =7Z & P;°, Z/2Z,

and a(n) = 2n + 0.
Find a short exact sequence as above, with R=R, L =M & M and M # 0.

Solution:

1.

Since by exactness we have Im() = ker(N — 0) = N and ker(5) = Im(«), the
First Isomorphism Theorem applied to the map (5 gives M/ Im(a) = M/ ker(53) =
Im(8) = N, so that N is determined, up to isomorphism, by the map «. Notice
that ker(a) = Im(0 — L) = 0, so that « is injective and L = Im(a). [Calling 3 the
isomorphism M/Im(«) — N we just used, the First Isomorphism Theorems can
be explicited by saying that 3(m + Im(a)) = B(m), so that f = B o TIm(a), Where
TIm(a) 18 the canonical projection M — M/Im(a). Then we have an isomorphism
of exact sequences, in the sense that the two squares in the following diagram
commute:

0— L —2e M M/Im(a) — 0

idL\ idM{ B’l
B

(6
0 > L - M - N -0

This means that the isomorphism 3’ is determined by 3 and viceversa.]
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2. By previous point, we can take N = M/Im(«). We have

~ Z®PD2,%/2Z
- 2Z.@0

(x) M/Im(«) %Z/QZGBéZ/QZ%éZ/ZZ =N
i=1 i=1

The second isomorphism is just a translation by one of the index, while the first
isomorphism comes from the more general fact that given R-modules A4;, i € [
and submodules A, < A;, the following is a surjective R-linear map:

() D Ai — EP(Ai/A)

i€l i€l
ai1+-"+aim»—>(ai1+Ai1)+-~+(a,~m+A,~m)

whose kernel is precisely @,.; A;.

Composing the resulting isomorphism (*) with the natural projection M — M/ Im(«)
we obtain an R-linear map (notice that every element in a infinite direct sum is
always equal to a finite sum of elements in the direct summands):

o0 (o]
B:M=7o@%/2%~ E7/2Z =N
=1 =1
t+ay+agy+---ap+—> by +ba+ -+ bry1, where
by =tand b;_1 = a; fOI“iZl,...,k—i-l

With this 8 and N, we have exactness by construction.

3. Since we want to construct an injection of non-zero R-vector spaces M &M — M,
we need 0 < 2dimg (M) = dimg(M & M) < dimg (M), which can only hold
when M is infinite dimensional. We then suppose that M = @, , R - ¢;, and
by taking two copies (€})icz, (€] )icz of the basis (€})icz we can write M & M =
Dicz R €, ® Dz R €7
Then we can define many R-linear injective maps o« : M & M — M, with a
resulting IV that can vary. Recall that defining a R-linear map of R-vector space
is equivalent to choosing images for a basis of the domain.

a) Define o by imposing «a(e}) = esiy1 and a(e) = esiye. Then Im(a)
Diem\3zR - €i, so that by the isomorphism (¥*) above we have M/ker(a)
DicszR - €;, which is easily seen to be isomorphic to M by mapping esx to eg.
Hence one can take N = M, and the surjective R-linear map

11l

8: M — N
esr — €k
e — 0 if 31 h.

Then Im(«) = ker(3), and we have a short exact sequence

0 MeM3SME Mmoo
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b) Define o by imposing a(e}) = ez and «(e]) = egiy1. Then Im(a) = M,
meaning that « is an isomorphism, and by Point 1 we get N = 0, so that we
have a short exact sequence

0sMaMSMEo0o.

c) Let n be a positive integer and take bijections v : Z — Z<o and x : Z — Z>p,
- this can be done by “counting” (with non-positive integers and with integers
bigger than n) the elements of Z. Then define a by imposing a(e;) = e,
and a(e]) = e, so that a is injective and Tm(a) = @iez,uz.,R - €; and
the isomorphism (sx) above gives M/Im(o) = @;; R - e; =: R™. So we take
N = R" and define 8 : M — N mapping ex — e if 1 < k <n and e, — 0
else. Then we have a short exact sequence

0 MaeM3SMER So.

2. Let R be a ring and M be an R-module. Let N < M and L < M, meaning that N
and L are R-submodules of M.

Show that NN L < N, and that L < N + L < M, and prove that there is an
isomorphism N/(N N L) -~ (N + L)/L.

Solution:

This exercise is very similar to Exercise 2 from exercise sheet 4, which we will assume
as already proven. All our R-modules are in particular abelian groups, and at level of
the underlying abelian groups everything is proven.

To prove that NN L < N and L < (N + L) < M, first notice that this is true at level
of abelian groups (that is, those statement are true giving to “<” the meaning of “is a
subgroup of”), so that we only need to check that they are stable subsets under scalar
multiplication.

e NNL<N:Ifxe NNL andr € R, then we have r-x € N and r - ¢ € L, since
N and L are submodules of M, so that r-x € N N L;

o [ < N + L is trivial being L < M;

e N+ L < M: every element x € N + L can be written as x = n+1 for some n € N
and [ € L, so that Vr € R we haver -z =7r-(n+10)=r-n+r-1 € N+ L by
definition, being r-n € N and r -1 € L.

Now, define the map

N— (N+L)/L
n—n+ L.

This map is easily seen to be R-linear, and it is surjective because elements in the
codomain are all of the form (n'+1')+ L =n'+ L for n’ € N and I’ € L. Finally,
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we have that [ + L = Oyyr)/r if and only if [ € L, so that the kernel of the map is
N N L. Then the First Isomorphism Theorem for R-modules gives an isomorphism
N/(NNL) -~ (N+L)/L.

. Let R # 0 be a commutative ring. We say that a € R is a zero-divisor if there exists
b € R such that b # 0 and ab = 0. We say that a € R is regular if a is not a zero-divisor.

1. Prove that invertible elements in R are regular. Is the converse true?

2. Let Rieg = {a € R : aisregular}. Prove that R, contains 1p and that it is
stable under multiplication. This is also phrased by saying that the R,z is a
multiplicative subset of R.

3. Let now M be an R-module. Define Moy = {m € M|3r € Rz : 7-m = Op}.
Prove that M., is a submodule of M. It is called the torsion submodule of M.

4. We say that a module N is torsion-free if Ny, = 0. Prove: for every R-module
M, the module M /M, is torsion-free.

5. Find the torsion submodule of the Z-module M = R/Z. What is M /Mo, ?
Solution:

1. First, observe that » € R is regular if and only if ru = 0 with v € R implies u = 0.
Let r € R be a unit, with inverse s. If ru = 0 for some u € R, then 0 = 0-s =
(ru)s = (rs)u = u, so that v = 0. Hence every invertible element in R is regular.
The converse is not true in general. For instance, if R = Z, then 2 is regular, but
it is not invertible.

2. We have that 1p is regular, because 1 - r = 0 implies » = 0. Now suppose that
7,5 € Ryeg. Then rs is also regular, since if rsu = 0 for some u € R, then being r
regular we get su = 0, and being s regular we can conclude u = 0.

3. Let m,n € Mo, with r-m = s-n = 0y for some r,s € Ryee. Then rs-(m+n) =
(rs)-m+(rs)-n=s-(r-m)+r-(s-n) = 0y, and being rs € R, by previous point,
we have m+n € Mio,. Now for any a € R we also have r-(a-m) = a-(r-m) = Oy,
so that a - m € Mo, as well. We can then conclude that M, is a submodule of
M.

4. Suppose that m + Moy € (M/Mior)tor- Then there exists r € Ryeg such that
00/ Meoe =T (m+ Mioy) = r-m+ Mior, which is equivalent to r-m € M;,,. Hence
there exists s € Ryeg such that s- (r-m) = 0p. Then (sr) - m = 0p7, and since
s € Ryeg by Point 2, we can conclude that m € M, so that m+ Mo =0 M/Mior -
Hence M /Mo, is torsion-free.

5. For R = Z and M = R/Z, we claim that Mo, = Q/Z = {q+ Z|q € Q} < R/Z.
To prove the inclusion “C”, suppose that a+ 7 € M;o,. This means that for some
non-zero n € Z we have na = m € Z, so that o = m/n is rational by definition.

Conversely, if ¢ € QQ, there exists a positive integer k such that kq € 7, so that
k-(¢+72)="1.
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Now we have that
M R/7Z

Mtor B Q/Z

where the last isomorphism is due to the Third Isomorphism Theorem stated
below (applied with R =7, A =7, B=Q and C = R).

=R/Q,

Third Isomorphism Theorem. Let R be a ring and A < B < (' inclusions of
R-modules. Then B/A < C/A, and there is an isomorphism

¢/

B/A =~ (C/B.

Proof: The inclusion of quotient modules is clear by definition. For the isomorphism,

consider the map C' — % sending ¢ — (¢ + A) + (B/A). It is easily seen to be a

surjective R-linear map, whose kernel is B. Then the isomorphism follows from First
Isomorphism Theorem. ]

. (*) Let R be a commutative ring. If M and N are R-modules, we define Hompg (M, N)
as the set of R-linear maps M — N. It is easily seen to be an R-module by defining

(f+g9)(m) = f(m)+g(m), (a-f)(m):=a-(f(m)), Vf,g € Homg(M,N), a € R, m € M.
1. Let N be an R-module. For every R-linear map f : M; — Ms, define

f* : HOIIIR(MQ,N) — HOII]R(Ml,N)
g—gof.

Prove that f* is also an R-linear map, and that we have the following properties:
e (fao f1)* = f{ o fs, for every couple of R-linear maps f; : My — My and
Ja 1 My — Ms;
e id}, = idgom,(m,n) for every R-module M.
2. Define a natural map Homp(M; & My, N) — Hompg(M;, N) & Homp(Ma, N) and
prove that it is an isomorphism of R-modules.

3. Prove that for any exact sequence of R-modules A — B — C — 0, one has that
the corresponding

0 — Hompg(C, N) - Hompg(B, N) — Hompr(A, N)

is also an exact sequence of modules.

4. Let A = Endg (M), where M is a countably infinite dimensional R-vector space
(i.e., M has an R-basis B = (e;)iez-,). Prove that A? is isomorphic to 4 as an A-
module. [Hint: First, prove that M = M @& M as R-vector spaces.] What happens
if M is finite dimensional? (What if M is uncountably infinite dimensional?)

Solution (sketch):
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1. To prove that f* is R-linear it is enough to check on elements of M; the equalities
of maps (g +h) o f = (g0 f)+ (hof) and (r- f)og = r-(fog), where
g,h € Homp(Ms, N) and r € R.

The property (f20 f1)* = fiofs, for linear maps fi : M1 — My and fa : My — M3
is easily checked on elements g € Homp(Mas, N). Analogously one can check that
id}y; = idnom 5 (M, N)-

2. For i = 1,2, denote by e; the canonical inclusion map M; — M; & M5 and by p;
the canonical projection map p; : M1 @ My — M. In the same way, denote by d;
the canonical inclusion d; : Hompg(M;, N) — Hompg(M;, N) ® Hompg(Ms, N) and
by ¢; the projection Hompg(M;p, N) @ Hompg(My, N) — Hompg(M;, N).

Define a map ¢ : Homp(M; & My, N) — Homp(M;, N) @ Homp(Msz, N) sending
g+ €ei(g) + e3(g). To be precise, we can write ) = dj o e] 4 dg o €3, and deduce
that v is R-linear (why?).

Also, define ¢ : Homp(M;, N) @ Homp(Ms, N) — Homp(M; & Ma, N), sending
f = fi+ f2, where f; € Homp(M;, N), to pi(f1)+ p5(f2). Formally, ¢ = pjoq +
P30 q2.

Now 1oy = (Zi:m dioel)o (ijl,Q pjogj). Using linearity, we need to consider
compositions of the form e} op; = (pjoe;)*. By Point 1, this can be seen to be the
zero map for i # j, and an identity map for ¢ = j. Then ¥ o p =dj o ¢ + d2 0 go,
which is the identity of Homp (M1, N) @ Hompg(Ms, N) (check!).

Conversely, po1) = (Zj:LQ p; ogj)o (Zi:m d;oe}), and considering that g;od; is
zero if i # j and an identity otherwise, using Point 1 we get o1 = (ej0p;+eg0p2)*,
which turns out (how?) to be the identity of Hompg(M; & My, N).

Hence ¢ and 1 are each others inverses, and we have proven the desired isomor-
phism.

3. In the given exact sequence, call the maps f: A — B and g : B — C'. We have to
prove that ¢g* is injective, and that Im(g*) = ker(f*).

a) g* is injective: Suppose that v € ker(g*). This means that v : C — N is an
R-linear map such that ~ o g is the zero map B — N. But g is surjective, so
that for every ¢ € C' we have that there exists b € B such that ¢ = g(b), and
v(c) = (yog)(b) =0(b) =0, and v = 0. Hence g* is injective.

b) Im(g*) C ker(f*): Suppose that 8 € Im(g*). This means that § = yo g for
some v € Homp(C,N). Then f*(8) = o f=aogo f=0since go f =0, so
that 8 € ker(f*), proving the desired inclusion.

¢) Im(g*) D ker(f*): Suppose that 8 € ker(f*), that is, 8 € Hompg(B,N) is
such that 8o f is the zero map A — N. We want to define an R-linear map
v : C — N such that yog = ¢g*(v) = 8. For ¢ € C, by surjectivity of
g there exists b € B such that g(b) = ¢, and we try to define vy(c) = B(b).
This can be seen to be a good definition: if g(b) = g(¥'), then g(b —b') = 0,
so that b — V' € ker(g) = Im(f) and b — b’ = f(a) for some a € A. Then
B(b) — B) = Bb—V) = (Bo f)(a) = 0 by hypothesis. Hence ~ is well
defined, and it is easily seen to be a linear map by chosing, for each R-linear
combination ¢ = ry - ¢; + 72 - ¢ of elements c¢q,co € C some counterimages b;
and be via g of ¢; and ¢g, and noticing that g(ry - by + r2 - ba) = ¢, so that

*
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Y(e) = B(ry- by 4+ 1o -ba) = r1 - B(by) + 12 - Bba) = r1-v(c1) + 72 - Y(c2).
Then ¢g*(v) = B follows directly from the definition of v, proving the desired
inclusion.

Suppose that M is a countably infinite dimensional R-vector space, with M =

@B,cz R - e;. Then part 3.b of Exercise 1 gives an isomorphism M & M 5 M
and Point 1 can be used to prove that ¢* is also an isomorphism, so that

A = Homp (M, M) 5 Hompg (M & M, M) % (Homp (M, M))? = A2,

is a chain of isomorphisms of R-vector spaces, where v is the isomorphism
from Point 2 (with M} = My =N = M).

Denoting the isomorphism above as & : A — A2, we want to prove that ¢ is
also an isomorphism of A-module. To do so, we decompose £ = dj o0& +do0&s,
with & : A — A, and establish A-linearity by proving that for f,g € A one has
the equality () in the following:

dio&(fog)+dyobs(fog) =E(fog) L fotlg) =drofoki(g)+dao foba(g),

where in the last equality we used the A-module structure of A% (A acts by
composition on the left in both entries of A?). To check (*) above, we prove
that the first and the last compositions are equal, and this is true of course if
dio&(fog) =djofo&(g) for both ¢ = 1,2. Notice that & = ¢; o £, so that
using the definition of ¢ and v, we get:

dio&i(fog)=diogo(dioe]+deoes)od*(fog)=d;oel o (fog)=
=djofogodoe =diofoejod(g)="--=
=d;o fo&g),

and we can conclude the proof.

If M is zero, then the result is trivially true, being A = 0. If M # 0 is finite
dimensional, with & = dimg (M), then by basic linear algebra we have an
isomorphism of R-vector spaces A = Homg (M, M) = My, ,(R) = R*, so that
A? =2 R2¥* and we cannot have an isomorphism A = A2, the dimensions over
R being distinct.

Finally, if M is an infinite dimensional R-vector space, one can prove that still
M & M = M, and repeat the same argument used for M countably infinite
dimensional (where the only information about ¥} that we used is that it is
an isomorphism of R-vector spaces). First, recall that any vector space has a
basis (this can be proven using Zorn’s Lemma). Then let M =, ; e;R. We
can write M & M =Y., eiM, where we take a set I’ disjoint with I with
|I| = |I'|. Then giving an isomorphism of R-vector spaces M & M = M is
equivalent to giving a bijection I — I U I’, which is equivalent to proving that
I =JUK, for some J, K C I with INK =@ and |J| = |K| = |I|. To prove
this, it is enough to prove that I is a disjoint union of subsets of countable
cardinality [then one can split all those countable subsets NN, into two disjoint
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parts J,., K, of countable cardinality, and take J = U,.J,. and K = U, K., which
can be easily proven to be of the same cardinality of 1.

To prove that [ is a disjoint union of subsets of countable cardinality, again one
can apply Zorn’s Lemma: consider the following poset of families of disjoint
countable subsets:

S ={{Sa}acalVa # B € A, Sa C1,|Sa| = 2|, Sa N S5 = 2},

order by inclusion C (of families of countable subsets). Being I infinite, we have
a copy Z of Z in I, so that {Z} € S # &. Now suppose we are given a chain
of elements (Sx)x = ({Satack)x € S. Then it is bounded by B = |Jx Sk.
Indeed, B is a family of countable subsets of I and if two of those subsets
Say, Say, are not disjoint, suppose that they belong respectively to Sk, and
Sk, (with a; € K;). Since (Sk)k is a chain we have Sk, , Sk, C Sk, for some
K3, so that Sk, € S contains both S,, and S,,, contradiction. Then there
is a maximal collection of countable disjoint subsets {S,},er, with S, C I,
which means that the subset of the remaining elements U := I \ | J, o is finite
(else, we could add another disjoint countable subset to the maximal collection,
contradiction). Then we can choose 79 € T and replace Sy, with S,, UU (which
is still countable), and obtain a disjoint union of countable subsets of I.



