D-MATH Algebra 1 HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 8

The content of the marked exercises (*) should be known for the exam.

1. (*) [Formal construction of the polynomial ring] Let A be a commutative ring and
consider the set

V ={(a;)|i € Z>p,a; € A,a; =0 for i large enough}.

Endowing V' with componentwise sum and with the scalar multiplication a - (a;) =
(a-a;), we have that V' is an A-module. Define a multiplication

VxV >V
(@), (bi)) = (ai) - (bi) = (i), ¢ = Z a;by
J,k>0
k=i

1. Show that this product is well defined.

2. Show that (14,04,04,...) is a neutral element for this product, and that the
product is associative, commutative and distributive with respect to addition.
This allows us to conclude that V is a ring.

3. Let Y := (o), with ag = 14 and «; = 04 for ¢ # 1. For j > 0, find the sequence
of elements f3; for which Y7 = (8;). Deduce that (Y7);>¢ is a basis of V as an
A-module.

4. Let B be a commutative ring, fo : A — B a ring homomorphism and b € B. Prove
that there exists a unique ring homomorphism f : V — B sending f(Y) = b and
f(a-1y) = fo(a) for each a € A.

5. Let M be an A-module and T : M — M an A-linear map. Show that there
exists a unique V-module structure -y on M such that Y -y m = T(m) and
(a-1y) -y m = a -4 m. Moreover, show that if M is finitely generated as an
A-module, then so it is as a V-module. Is the converse true?

6. Prove that V and A[X] are isomorphic rings.
Solution:
1. We have that (a;) - (b;) defined as above is a uniquely determined sequence (c¢;) of

elements in A;, for every (a;), (b;) €. The product is well-defined if this sequence
belongs to V, that is, if ¢; = 0 for ¢ > 0. By hypothesis, there exists positive
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numbers n, m > 0 such that a; = 0 for ¢ > n and b; = 0 for ¢ > m. Then one has
for every N > n + m that

N
CN:Zaier»mz Zaz n+m—i Z a;b ntm—i =0+ 0=0,
=0

1=m-+1

since for i € {0,...,m} we have n +m — ¢ > m, so that b,ym,—; = 0, and for
ie{m+1,...,m+n0} we have a; = 0.

. First, notice that the product is commutative, as we can interchange the indexes
j and k in the sum appearing in the definition. Then we just need to check that
(e;) = (1,0,0,...) is neutral on one side, and we have

(1,0,0,. < Z €jak> al )

3,k>0
jHk=i

since for j # 0 we have e; = 0. Hence 1y := (1,0,0,...) is a neutral element for
the multiplication.

As concerns associativity, for every (a;), (b;), (¢;) € V applying the definition we
have

o090 (Sb) 1= (S es)os) -

k=0 5=0
(XY wbsn) = (X autuer)
k=0 j=0 a,B,y>0
a+pB+y=i

and

%

(as) - ((bi) - (&) = (@) - ( Zbkcz e =( aJ(Zbkcu k) =

7=0
i —Jj
= (Z sticicye) ) = (30 anber)
j=0 k= a,B,y>0
a+B+y=i

so that the product is associative. Finally, we check distributivity with respect to
addition (only one side, being the product commutative): for every (a;), (b;), (¢;) €
V' we have

i i

(ai) + (b)) - (e2) = (@ +b0) - (e)) = (D +b)er) = (Do (ageiny +bjeiy)) =

j=0 J=0
(S aen) + (Sles)) = (@) () + (b (co).
j=0 Jj=0

So V is a ring with componentwise sum, multiplication defined as above, Oy =
(0,...) and 1y = (1,0,...).
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3. For i, j € Z>o we denote with d; ; € A the Kronecher’s delta of ¢ and j, which is 1
if i = j, and 0 otherwise. Then Y = (&;1);. We claim that Y7 = (§; ;); for all j > 0.
This is easily proven by induction. For j = 0,1 this is clear. Now suppose that
Y* = (6; )i (inductive hypothesis) and let us prove that Y5+ = (§; (x1))i. Write

YEFL = (9;). Then ¥pyq = > ji>0 00,1 = 1, because we can make both 4’s
jl=k+1
non-zero only when we choose j = k£ and | = 1, in which case we obtain 1 as

summand. On the other hand, for h # k+1 we see that ¥, = >~ >0 ;10,1 =0,
because the couple of indexes (j,1) = (k,1), which is the only cJ)IJ;(le fnaking both
§’s non-zero, is not considered in the sum. In conclusion, Y* = (0i k)i, that is, V&
is the sequence with 1 in the k-th position and 0 everywhere else.

Then for every a = (a;) € V we have that a =}, ..o a;Y*, which is a finite sum
by definition of V', so that (Y*);cz., spans all V' over A. Moreover a finite linear
combination Z;'n:o ai; Y% where the ij’s are distinct indexes in Zx is zero if and
only if all the a;; are zero, so that we can conclude that (Y*);cz., is an R-basis
for V. As the set of indexes i such that a; # 0 is finite, there exists d € Z bigger
or equal than all those i’s, and we can rewrite a = >_..,a;Y". Notice that since
the Y7 are R-linear independent, this decomposition is unique up to choosing a
different d, in which case we can just have fewer/more zero summand.

4. We first prove uniqueness and then existence. Also, by abuse of notation, for
r € A we write r = r -1y € V. It is the sequence with 7 in the 0-th position and
0 everywhere else.
Suppose that f : V' — B is a ring homomorphism sending A 3 a — fo(a) and
Y +— b. Then by applying previous point, for s € V we can write s = Z?:o 5Y?
for some s; € A and d € Z>, giving

d

d d d
F(s) = F(3osY") = 30 Ff (V) = 3 folsi) FY) = 3 folsi)d'
1=0 1=0 i=0

1=0

which means that f has a prescribed behavior on all V', that is, if f exists it is
unique.

To prove existence, we just check that the definition for f on s that we found
while proving uniqueness, that is,

d d
P sY) =3 folsapp’
i=0 i=0

gives indeed a ring homomorphism. First, notice that this is a good definition
because the decomposition s = Z?:o 5;Y" is unique up to extra zero-summand,
and fp(0) = 0 being fy a ring homomorphism. Then we have f(0) = f(0-Y?) =
f0(0)8Y = 0, and (1) = f(1-Y?) = fo(1)b° = 1 being fy a ring homomorphism. To
conclude, we prove that f respects sums and multiplications. For every s,t € V,
we let d be big enough so that we can write s = Z?:o s;Y' and t = Z?:o tLY?"
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Now

d d
f(s+1) :f(Z(si + ti)Yi) = Zfo(si + )b’ =
=0 =0
d

d d
Z i) + fo(t:)b’ Zfo(si)biJero(si)bi =
- ,0

= =

(Zsyl)—i-f(ztyl)_ )+ £(t),

and
2 i | 0 Z, |
-3 < 1S (5 ) -
= S (S o lt ) = 3 ol -3 Al = 1) 50
=0 =0 =0 i=0

and f: V — B is a ring homomorphism which maps Y — b and A 3 a — fy(a).

. Similarly as in previous point, we first prove uniqueness, and then existence. By
hypothesis, we have an A-module structure on M, and an A-linear map T : M —
M.

Suppose we have that M has also a V-module structure with Y - m = T'(m) and
with a € A acting on m € M as it does with respect to the given A-module
structure. Then for every s = Z?:o s5;Y* €V and m € M we have

d
s'm:(ZsiYZ) Zs, TZ ZTZ si-m),
i=0

so that s-m is uniquely determined, and the V-module structure is unique, if it
exists.

Disclaimer: Notice that by 7% we denote the multiplication of T' with itself in the
ring of additive endomorphisms End(M ), which is just the i-th iteration of the
endomorphism 7.

Now we prove existence, by checking that the definition we found,

(zd:siYZ) -m = zd:Ti(si -m),
1=0

=0

gives indeed a V-module structure on M coinciding with the one of A-module on
elements a € A and satisfies Y - m = T'(m). Those properties are clear from the
definition, which is well-given as the decomposition s = Zfzo s5;Y'" is unique up to
adding zero summands, and 04 - m = 0 by hypothesis. Clearly, for every m € M
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we have 1y -m = (1-Y%) -m = T°1 - m) = m. Now we check that s- is additive
for every s = Z?:o 5;Y' € V: for every m,n € M, we have indeed:

s-(m+n) (ZSZYZ) (m+n) ZT’ “(m+n)) =

d

Y T )+ 3 s () =t s+
=0

i=0
Now we check compatibility with operations in V. For every m € M and s,t € V,
with s = E?:o s;Y"and t = Z?:o ;Y we have

d d d
(s+t)-m:ZTi((si+ti)-m) :ZTi(si-m)—i—:ZTi(ti-m) =s-m+t-m
=0 =0 =0
and
2d i ' 2d i '
(S ‘t) -m = (Z (ZSjti_j>Yl> cm = ZZS]‘Q_]‘ -T’(m =
i=0  j=0 i=0 j=0
—ZZSkth Tk+h Zsk Tk<zth Th ) < (t-m)
k=0 h=0

The proof is finished, since we have also proven that the axioms of V-modules are
satisfied.

. Define a map

¢ :V — R[X]
d d

Z Sl'Yi — Z SZXl

i=0 i=0
It is well-defined because of Point 3, and it is clearly surjective. The operations
defined in V' makes ¢ a ring homomorphism, whose kernel is trivial since a poly-
nomial is zero if it only has zero coefficients. Hence this is an isomorphism of
rings.

. Let A be a commutative ring

1.

Show that there exists a unique A-linear map

D: AX] — A[X]

such that

Is D a ring homomorphism?
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2. Prove that for all P,Q € A[X] one has
D(PQ) = PD(Q) +QD(P)

3. (Factorization Theorem) Now let A = K be a field, and P € K[X]. Prove that
for every a € K one has P(a) = 0 if and only if P is divisible by X — «, that
is, there is a polynomial @ € K[X] such that P(X) = (X — a)Q(X) [Hint: One
implication is immediate. For the other, divide P by X — «.]

4. We say that a € K is a multiple root of P € K[X] if P is divisible by (X — «).
Prove: « is a multiple root of P if and only if P(a) = D(P)(«) = 0.

Solution:

1. First, notice that such a map D cannot be a ring homomorphism, since it sends
1—0#1.
Since the X*, i > 0, form a basis of A[X] as an A-module (as the isomorphism in
Exercise 1.6 is easily seen to be an isomorphism of A-modules as well), for every
map f : {X'} — A[X] there exists a unique R-linear map R[X] — R[X] which
behaves as f on the X*. In this case, we can take f : X* — iX*~!. This is because
of the Universal Property of free modules:

Theorem Let M be a free R-module M = @, ; R - m;, and denote B = {m;|i € I}.
Let N be another R-module. Then for every map f : B — N there exists a unique
R-linear map o : M — N such that a|y = f

Proof: Suppose that m € M, then by hypothesis we have a unique decomposition
m = Y .c;7i ©mg, with r; = 0 for almost every i € I. If a : M — N is R-linear
and aly = f, then we have that a(m) = Y. ;ra(m;) = > ,c;7if(m;) is uniquely
determined, proving uniqueness of a. To conclude, we need to check that

a(Y riomi) =Y rif(m)

i€l iel

defines indeed an R-linear map. Uniqueness of the linear combination expressing m €
M proves that « is well-defined, and linearity follows easily from the fact that linear
combinations of linear combinations of the m;’s are still linear combinations of the

m;. O

2. The identity can be directly checked by writing P = Y"1 ;X" and Q = > =0 biX J
and computing both sides. An equivalent (but faster) way to do this is to observe
that both sides of the identity D(PQ) = PD(Q) + QD(P) are linear in P and in
Q. Then it is enough to check the equality for an arbitrary P and Q = X*, k > 0,
and this is then equivalent to check the equality for P = X7 and Q = X*, with
J,k > 0, which is immediate:

D(XIXF) = DXtk = (j + k)DIHF=1 = X7 . pxh-L 4 Xk X7t
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3. Suppose that P € K[X] is divisible by (X — «), that is, there is a polynomial
Q € K[X] such that P(X) = (X —a)Q(X). Then clearly P(a) = 0-Q(0), so that
« is a root of P.

Conversely, assume that P(a) = 0. As seen in class, we can use Euclidean division
to obtain polynomials Q(X), R(X) such that P(X) = (X — «)Q(X) + R(X) and
deg(R) < deg(X —a) =1. Then R(X) =7 € K, and

0=Pla)=0-Q(a) +7r =,

so that P(X) is divisible by X — a.
4. Suppose that a € K is a multiple root of P, that is, P(X) = (X — a)?Q(X).
Clearly, P(«) = 0. Moreover, by Point 2 we have
D(P) = (X —a)’D(Q) + QD((X — a)*) = (X — a®)D(Q) + 2(X — )Q,

from which D(P)(a) = 0 just by substitution.

Conversely, assume that P(a) = D(P)(«) = 0. By previous point we can write
P = (X — «a)S for some polynomial S € K[X]. Then by Point 2

D(P) = D((X — )S) = (X — a)D(S) + &,

and the condition D(P)(a) = 0 gives S(a) = 0, so that S is again divisible by
X —a, and we can conclude that P is divisible by (X —a)?, so that « is a multiple
root of P.

3. Let A be an integral domain. Show that A[X]* = A*.
Solution:

Of course, A* C A[X]* because A C A[X]. To conclude, we just need to prove that
any invertible f € A[X] is indeed in A*. Suppose that f € A[X]*, and that fg =1
for some g € A[X]. Of course f and g cannot be 0, so that we have well-defined
deg(f),deg(g) > 0. Being A a domain, we have that deg(fg) = deg(f) + deg(g)
(because the product of the leading coefficients is the leading coefficient of the product,
as it cannot vanish). Hence 0 = deg(1) = deg(f) + deg(g), and the only possibility is
that deg(f) = deg(g) = 0. Hence f,g € A, giving f € A*.

4. Let K be a field, and consider the ideal I generated by X and Y in K[X,Y]. Show:

1. I is not principal;

2. I is maximal.

Solution:
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1. By contradiction, suppose that I = (P) for some P € K[X,Y]. Then there
must exist @, R € K[X,Y] such that X = P-Q and Y = P - R. Notice that
both K[X] and K[Y] are integral domains, so that regarding K[X,Y] as K[X][Y]
or as K[Y][X] we have that both the degree in X and the degree in Y of a
product of polynomials are the sum of the degrees of the polynomials. As P,Q, R
cannot be zero, they have a well-defined degree. In particular, we have 0 =
degy (X) = degy (P) + degy (Q), which implies degy (P) =0, and 0 = degx (Y) =
degy (P)+degy (R), which implies degx (P) = 0. Then P € K, since it is constant
in both variables. In particular, P € K*, so that 1 € (P) and P = K[X,Y]. This
means in particular that for some A, B € K[X,Y| we can write X - A+Y -B =1,
which is a contradiction (as evaluating the two sides of the equality at X =Y =0
we obtain 0 = 1, which is not true in a field. Hence [ is a not a principal ideal.

2. We can do this by proving that K[X,Y]/(X,Y) is a field. Since we are adding to
K two variables which then we set equal to zero (by quotienting over I), intuition
suggests that K[X,Y]/(X,Y) = K, which is a field by hypothesis. This is true:
consider the map

¢: K[X,Y] > K
P(X,Y) — P(0.0).

It is a ring homomorphism (as it is the composition of evaluation maps K[X|[Y] —
K[X] — K), and it is clearly surjective, as every element in K is its own coun-
terimage. We claim that ker(¢) = (X,Y). The inclusion “D” is immediate. For
the other inclusion, take P € ker(¢). Dividing P by X and its remainder by Y,
we obtain a constant ¢ € K[X,Y] and polynomials A € K[X,Y], B € K[Y] such
that P = XA + Y B + ¢, and then evaluating the two sides at (0,0) we obtain
0= P(0,0) =¢,sothat P=XA+YBe (X,Y).

To conclude, we apply First Isomorphism Theorem for rings, which gives an iso-
morphism K[X,Y]/(X,Y) = K as desired.



