D-MATH Algebra 1 HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 9

The content of the marked exercises (*) should be known for the exam.

1. (*) Let K be a field.

1. Suppose that P € K[X] is a non-zero polynomial of degree d. Prove that P has
at most d roots in K. [Hint: Exercise 2.3 from Exercise sheet 8].

2. Is the previous point also true if K is just supposed to be a division ring? [Hint:
Exercise 1 from Exercise sheet 6].

3. Now suppose that K is an infinite field, and that P € K[X] is such that P(a) =0
for every @ € K. Prove: P =0 in K[X].

4. Still supposing that K is an infinite field, show that if P € K[Xy,...,X,] is
such that for every (ai,...,a,) € K™ one has P(ag,...,a,) =0, then P =0 in
K[X1,..., X0

Solution:

1. Let V(P) C K be the set of roots of the polynomial P € K[X]. For every finite
collection of distinct roots aq,...,ar € V(P), we have that (X — «;)|P. Since
the polynomials X — a; have degree 1, and K is a field, we have that the only
possible decompositions of X — «a; are of the form ¢ - ¢(X) for some polynomial
q(X) of degree 1 and constant ¢ € K \ {0} = K*. Hence the polynomials X — «;
are distinct irreducible elements in K[X] which all divide P. We claim that then

k

[[x —alP (+),

=1

and being K a field we have k = deg(Hle(X —;)) < deg P = d. Hence all finite
subsets of V(P) have cardinality < d, implying that |V (P)| < d, that is, P has at
most d roots.

We are only left to prove the claim (). This is true more in general for any UFD A
(and A = K[X] is a UFD): if 71,...,7 are distinct irreducible elements dividing
f € A, then their product divides f as well. To prove it, we work by induction
on k, the case k = 1 being trivial. So we can suppose that vy - -+ - y,—-1|f, and
write f =41 -+ - Yp_1 - g for some g € A. Decomposing g into irreducible and
using uniqueness of decomposition into irreducible, we have that v,|g, and this
gives our claim.
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2. No, it is not true. For example, the polynomial X2 + 1 € H[X] vanishes on 1, j
and k (see Exercise 1 from Exercise sheet 6).

3. By contradiction, assume that P # 0. Then by Point 1 we have that P has less
than deg(P) roots. Since every o € K is a root, we get oo = |K| < deg(P) < oo,
contradiction.

4. We prove this by induction on n, the case n = 1 being proved in previous point. So
we can prove the statement by supposing that it holds for n—1. For d = degx (P)

and some a; € K[X1,...,X,_1], we can write
d
P(X1,..., Xn) =Y ai(X1,..., Xn 1) X}
i=0
Then for every (aq,...,a,_1) € K" we define
d
Gornman (V) = Plar,. . 00 1,Y) =Y ai(on, ..., on1)Y? € K[Y],
=0

and we observe that by construction qq, . o, , € K[Y] vanishes on all elements
in K, so that by the previous point we have gq,.... o, ,(Y) = 0, meaning that for
alli=0,...,dand (aq,...,a,_1) we have a;(aq,...,a,—1) = 0, so that inductive
hypothesis (applied on all the a;’s) gives a; = 0, which implies P = 0.

2. Let p € 7Z be a positive prime number.

1. Prove that there exists a unique ring map Z[X]| — (%/pZ)[X] sending X — X,
and that it is surjective. For f € Z[X], we denote by f its image via this map.

2. Let f = ZzzoaiXi € Z[X] be such that pla; for i € {0,...,n — 1} and p { a,.
Prove that f is a monomial in 7Z/pZ[X], and deduce that if f = gh in Z[X] with ¢
and h non-constant polynomials, then p?|ag [Hint: Z/pZ is a field, hence Z/pZ[X]
is a principal ideal domain].

3. Conclude: if f = Y (a; X" € Z[X] is such that p? { ag, p t an, pla; for i €
{0,...,n — 1} and the coefficients ay, ..., a, are coprime, then f is an irreducible
polynomial in Z[X]. (This is known as Eisenstein’s Criterion).

4. For n € Z~1, we denote by W, the set of primitive n-th roots of unity, and define
the n-th cyclotomic polynomial

o, (t) = [] (X —¢) € ClX].

CEW,

For n = p a prime number, show that ®,(X) € Z[X], and that it is irreducible over
7Z]X]. [Hint: First, find (X —1)®,(X). Then take also in account the polynomial

Q(X) = ¢p(X +1)]

Solution:
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1. Let B =7Z/pZ[X]. Applying Exercise 1 from Exercise sheet 8 (in particular, parts
4 and 8) with A = 7Z, we have that for every b € B and ring homomorphism
s : Z — B there exists a unique ring homomorphism A : Z[X] — B such that
X — band Z 5> m — s(m). Of course, this association (b, s) — A gives all the ring
homomorphisms A : Z[X] — B, as from A we can recover b = A\(X) and s = A|z.
But since (7Z, +) is generated as abelian group by 1z, which is mapped to 15 by
any ring map s : Z — B, there exists a unique ring homomorphism Z — B, and
hence a unique ring homomorphism ~ : Z[X| — B sending X — X.

More explicitly, we see that for m € Z we have v(m) = m := m + pZ, so that ~
just reduces the coefficients of f € Z[X] modulo p.

2. If f=3""a; X" € Z[X] is such that p|a; for i € {0,...,n — 1} and p { a,, then
f =@, X" is a monomial, and as v is a ring homomorphism, we have that f = gh
implies f = gh. Since B = Z/pZ[X] is a UFD (as it is a principal ideal domain)
where X € B is an irreducible element (by reasoning on the degrees of possible
divisors), we have that g, h are monomials of some positive (by hypothesis) degrees
d and e such that d + e = n. Then p divides all coefficients of g and h but the
leading ones. Since the constant terms of f is the product of the constant terms
of g and h, which are both divisible by p, we get that p?|ao.

3. This follows immediately by assuming by contradiction that f is not irreducible,
meaning that f = gh for some polynomials g, h which are not invertible. The
two polynomials g and h need then to have positive degree, because if one of
them were a non-invertible constant which would divide all the coefficients of f,
contradiction with the fact that they are coprime. Then g, h have positive degree,
and the previous point gives p?|ag, contradiction.

4. If ¢ € C is a p-th root of unity, then ¢ € C*, and |(|P = 1 (by Exercise 2.1 of
Exercise sheet 2), so that |[(| = 1. Then we can write ( = exp(¥i) = cos(?) +
isin(¢¥) for some ¥ € R, and get

1 = (¥ = exp(pdi),

which implies ¢ = 2kn/p for some k € 7Z. Notice that increasing k by p, the
resulting ¢ does not vary. Moreover, if ( is a non-primitive root of unity, then it
has as order (in €C*) a proper divisor of p, which gives ( = 1. So we have

Wy, = {exp(2kn/p) : k=1,...,p—1},

and (X — 1) - ¢p(X) = [[};_o(X — exp(2km/p)), a polynomial of degree p whose
roots are all the p-th roots of unity. Since they are roots of X? — 1, by applying
Factorization Lemma as we did in Exercise 1.1 and using the fact that C[X] is a
UFD, we can conclude that the two polynomials are the same up to a multiplicative
constant, which has to be 1 (by comparing the leading coefficients). Hence

XP -1

1 = XP L XP 24 4 X +1e€Z[X]

¢p(X)

Defining Q(X) := ¢,(X + 1), we have that @ is irreducible if and only if ¢, is
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(since their factorizations are in a degree-preserving correspondence). But

QU0 = oy +1) = S = 35 (1)

and we claim that @ satisfies the conditions to apply Eisenstein’s Criterion. Then
@ is irreducible over Z[X], and so is ¢,(X).

To prove the claim on Q(X), write a; = (k-li)—l)’ so that Q = Zﬁ;é apX". Then
ap—1 = (g) = 1, so that p { ap—1 and the coefficients are all coprime. For k =
0,...,p—2,wehave 1 < k+1 < p—1, and we shall prove that in this case p| (kil).

Indeed, one has
p\_pr--(p—k)
k+1 (k+1)---1’

and p appears as a factor only in the numerator, proving that this binomial coef-
ficient is divisible by p. Finally, we have ag = (Zl’) = p, so that p? { ag and we have
all the required conditions.

3. Let R = Z[iv/5] = {a + bi\/5|a,b € Z} C C.

1. Show that R is a ring, and determine R*. [Hint: Suppose that o € R*. What
can we say about |a|??]

2. Show that 2-3 = (1 +i/5) - (1 — i\/5) are two non-equivalent factorizations of
6 € R, so that R is not a UFD.

3. Prove that the ideal m = (2,1 4 iy/5) C R is maximal but not principal. [Hint:
Compute R/m and deduce that m is maximal. Working by contradiction and
using irreducibility of 2, you can prove that m is not principal.]

Solution:
1. We define operations on R as in C, and we want to check that R is a subring of

C. This is easily done by noticing that 0,1 € R, and that for a,b, ¢,d € Z one has
(a+biV5) — (c+divV5) = (a—¢c)+ (b—d)iVE € R
and
(a + biV5) - (¢ + div/5) = (ac — 5bd) + (ad + be)iv/5 € R,
so that R is closed by multiplication, sum, and taking inverses. Let o = a+biv/5 €
R. Then |af?> = aa = a? + 5b? € Z>p. Then if @ € RX, and aff = 1, we get

1=1-1=aBaB = |af?|8)? and |a|? can only be equal to 1 (as also |3|> € Z>).
Then 5b? < a? + 5b% = 1 implies that b = 0 and a = £1, hence R* = {£1}.

See next page!



2. Let us first prove that 2 is irreducible. Suppose that 2 = o for «, 5 € R. Then we

have 4 = |a|?|8]?, and |a|?, |3]? € Z>p. Moreover, we have seen before in proving
the previous point that if |a|?> = 1 we get o = £1 € R*, and the same holds for
5. Hence the only possibility for the factorization a8 = 2 to be proper is that
la] = |B8| = 2, which is not possible since 5b*> < a? + 5b?> = 2 implies b = 0, and
a® = 2 which cannot hold. Then 2 is an irreducible element of R.
As 2 clearly does not divide 1 £ iv/5 (as (1 & iv/5)/2 € Q[iv/5] has non-integer
coefficients, so that it cannot lie in R because 1,iv/5 are Q-linear independent
elements in C), we get that the two given factorizations of 6 cannot be equivalent,
so that R is not a UFD.

3. Let A = R/m. Notice that iWVb+m=—14+m=14m, so that a + biv5+m =
a + b+ m. This suggests that A = 7 /27 via

R 7

A=—— —

¢ m—>2Z
a+bivs+m— a+b+ 27.

Let us prove that the above is indeed a ring isomorphism. First, notice that we
have

a+bivim=d +Vivim < (a—d)— (b—V) €22 —
< (a—d)+(b-V)e2Z — (a—0b)—(d —V) €22,

which implies that ¢ is a well defined injective map. It is clear that ¢ is ad-
ditive, and that ¢(0) = 0, ¢(1) = 1, so that ¢ is surjective. Finally, we check
multiplicativity:

o((a + bivs +m)(c+ div/s +m)) = ¢((ac — 5bd) + (ad + be)iv/b +m) =
=ac+bd+ad+bc+2Z = (a+ b+ 2Z)(c+ d+ 27)

= ¢(a+bz\/§+m) . ¢(c+dz’\/5+m).

Then R/m is isomorphic to the field Z/2Z, implying that m is maximal in R.
Now we prove by contradiction that m is not principal. Suppose by contradiction
that m = (). We have v & R* (else it would generate the unit ideal R), and that
7|2, so that being 2 irreducible we have v = 2 - u, for some u € R* (explicitly,
v = #2), so that (2,1 +iv5) = (y) = (2). Then 2|1 + i1/5, which is false.
Contradiction. Hence m is not a principal ideal.



