
D-MATH Algebra I HS 14
Prof. Emmanuel Kowalski

Solutions of exercise sheet 9

The content of the marked exercises (*) should be known for the exam.

1. (*) Let K be a field.

1. Suppose that P ∈ K[X] is a non-zero polynomial of degree d. Prove that P has
at most d roots in K. [Hint: Exercise 2.3 from Exercise sheet 8].

2. Is the previous point also true if K is just supposed to be a division ring? [Hint:
Exercise 1 from Exercise sheet 6].

3. Now suppose that K is an infinite field, and that P ∈ K[X] is such that P (α) = 0
for every α ∈ K. Prove: P = 0 in K[X].

4. Still supposing that K is an infinite field, show that if P ∈ K[X1, . . . , Xn] is
such that for every (α1, . . . , αn) ∈ Kn one has P (α1, . . . , αn) = 0, then P = 0 in
K[X1, . . . , Xn].

Solution:

1. Let V (P ) ⊆ K be the set of roots of the polynomial P ∈ K[X]. For every finite
collection of distinct roots α1, . . . , αk ∈ V (P ), we have that (X − αi)|P . Since
the polynomials X − αi have degree 1, and K is a field, we have that the only
possible decompositions of X − αi are of the form c · q(X) for some polynomial
q(X) of degree 1 and constant c ∈ K \ {0} = K×. Hence the polynomials X − αi
are distinct irreducible elements in K[X] which all divide P . We claim that then

k∏
i=1

(X − αi)|P (∗),

and being K a field we have k = deg(
∏k
i=1(X −αi)) ≤ degP = d. Hence all finite

subsets of V (P ) have cardinality ≤ d, implying that |V (P )| ≤ d, that is, P has at
most d roots.

We are only left to prove the claim (∗). This is true more in general for any UFD A
(and A = K[X] is a UFD): if γ1, . . . , γk are distinct irreducible elements dividing
f ∈ A, then their product divides f as well. To prove it, we work by induction
on k, the case k = 1 being trivial. So we can suppose that γ1 · · · · · γn−1|f , and
write f = γ1 · · · · · γn−1 · g for some g ∈ A. Decomposing g into irreducible and
using uniqueness of decomposition into irreducible, we have that γn|g, and this
gives our claim.
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2. No, it is not true. For example, the polynomial X2 + 1 ∈ H[X] vanishes on i, j
and k (see Exercise 1 from Exercise sheet 6).

3. By contradiction, assume that P 6= 0. Then by Point 1 we have that P has less
than deg(P ) roots. Since every α ∈ K is a root, we get ∞ = |K| ≤ deg(P ) <∞,
contradiction.

4. We prove this by induction on n, the case n = 1 being proved in previous point. So
we can prove the statement by supposing that it holds for n−1. For d = degXn

(P )
and some ai ∈ K[X1, . . . , Xn−1], we can write

P (X1, . . . , Xn) =

d∑
i=0

ai(X1, . . . , Xn−1)X
d
n.

Then for every (α1, . . . , αn−1) ∈ Kn−1 we define

qα1,...,αn−1(Y ) = P (α1, . . . , αn−1, Y ) =
d∑
i=0

ai(α1, . . . , αn−1)Y
d ∈ K[Y ],

and we observe that by construction qα1,...,αn−1 ∈ K[Y ] vanishes on all elements
in K, so that by the previous point we have qα1,...,αn−1(Y ) = 0, meaning that for
all i = 0, . . . , d and (α1, . . . , αn−1) we have ai(α1, . . . , αn−1) = 0, so that inductive
hypothesis (applied on all the ai’s) gives ai = 0, which implies P = 0.

2. Let p ∈ Z be a positive prime number.

1. Prove that there exists a unique ring map Z[X] → (Z/pZ)[X] sending X 7→ X,
and that it is surjective. For f ∈ Z[X], we denote by f̄ its image via this map.

2. Let f =
∑n

i=0 aiX
i ∈ Z[X] be such that p|ai for i ∈ {0, . . . , n − 1} and p - an.

Prove that f̄ is a monomial in Z/pZ[X], and deduce that if f = gh in Z[X] with g
and h non-constant polynomials, then p2|a0 [Hint: Z/pZ is a field, hence Z/pZ[X]
is a principal ideal domain].

3. Conclude: if f =
∑n

i=0 aiX
i ∈ Z[X] is such that p2 - a0, p - an, p|ai for i ∈

{0, . . . , n− 1} and the coefficients a0, . . . , an are coprime, then f is an irreducible
polynomial in Z[X]. (This is known as Eisenstein’s Criterion).

4. For n ∈ Z>1, we denote by Wn the set of primitive n-th roots of unity, and define
the n-th cyclotomic polynomial

Φn(t) :=
∏
ζ∈Wn

(X − ζ) ∈ C[X].

For n = p a prime number, show that Φp(X) ∈ Z[X], and that it is irreducible over
Z[X]. [Hint: First, find (X − 1)Φp(X). Then take also in account the polynomial
Q(X) = φp(X + 1)]

Solution:
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1. Let B = Z/pZ[X]. Applying Exercise 1 from Exercise sheet 8 (in particular, parts
4 and 8) with A = Z, we have that for every b ∈ B and ring homomorphism
s : Z → B there exists a unique ring homomorphism λ : Z[X] → B such that
X 7→ b and Z 3 m 7→ s(m). Of course, this association (b, s) 7→ λ gives all the ring
homomorphisms λ : Z[X] → B, as from λ we can recover b = λ(X) and s = λ|Z.
But since (Z,+) is generated as abelian group by 1Z, which is mapped to 1B by
any ring map s : Z → B, there exists a unique ring homomorphism Z → B, and
hence a unique ring homomorphism γ : Z[X]→ B sending X 7→ X.

More explicitly, we see that for m ∈ Z we have γ(m) = m̄ := m + pZ, so that γ
just reduces the coefficients of f ∈ Z[X] modulo p.

2. If f =
∑n

i=0 aiX
i ∈ Z[X] is such that p|ai for i ∈ {0, . . . , n − 1} and p - an, then

f̄ = ānX
n is a monomial, and as γ is a ring homomorphism, we have that f = gh

implies f̄ = ḡh̄. Since B = Z/pZ[X] is a UFD (as it is a principal ideal domain)
where X ∈ B is an irreducible element (by reasoning on the degrees of possible
divisors), we have that ḡ, h̄ are monomials of some positive (by hypothesis) degrees
d and e such that d + e = n. Then p divides all coefficients of g and h but the
leading ones. Since the constant terms of f is the product of the constant terms
of g and h, which are both divisible by p, we get that p2|a0.

3. This follows immediately by assuming by contradiction that f is not irreducible,
meaning that f = gh for some polynomials g, h which are not invertible. The
two polynomials g and h need then to have positive degree, because if one of
them were a non-invertible constant which would divide all the coefficients of f ,
contradiction with the fact that they are coprime. Then g, h have positive degree,
and the previous point gives p2|a0, contradiction.

4. If ζ ∈ C is a p-th root of unity, then ζ ∈ C×, and |ζ|p = 1 (by Exercise 2.1 of
Exercise sheet 2), so that |ζ| = 1. Then we can write ζ = exp(ϑi) = cos(ϑ) +
i sin(ϑ) for some ϑ ∈ R, and get

1 = ζp = exp(pϑi),

which implies ϑ = 2kπ/p for some k ∈ Z. Notice that increasing k by p, the
resulting ζ does not vary. Moreover, if ζ is a non-primitive root of unity, then it
has as order (in C×) a proper divisor of p, which gives ζ = 1. So we have

Wp = {exp(2kπ/p) : k = 1, . . . , p− 1},

and (X − 1) · φp(X) =
∏n
k=0(X − exp(2kπ/p)), a polynomial of degree p whose

roots are all the p-th roots of unity. Since they are roots of Xp − 1, by applying
Factorization Lemma as we did in Exercise 1.1 and using the fact that C[X] is a
UFD, we can conclude that the two polynomials are the same up to a multiplicative
constant, which has to be 1 (by comparing the leading coefficients). Hence

φp(X) =
Xp − 1

X − 1
= Xp−1 +Xp−2 + . . .+X + 1 ∈ Z[X].

Defining Q(X) := φp(X + 1), we have that Q is irreducible if and only if φp is
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(since their factorizations are in a degree-preserving correspondence). But

Q(X) = φp(X + 1) =
(X + 1)p − 1

X + 1− 1
=

p∑
i=1

(
p

i

)
Xi−1,

and we claim that Q satisfies the conditions to apply Eisenstein’s Criterion. Then
Q is irreducible over Z[X], and so is φp(X).

To prove the claim on Q(X), write ak =
(
p

k+1

)
, so that Q =

∑p−1
k=0 akX

k. Then

ap−1 =
(
p
p

)
= 1, so that p - ap−1 and the coefficients are all coprime. For k =

0, . . . , p−2, we have 1 ≤ k+1 ≤ p−1, and we shall prove that in this case p|
(
p

k+1

)
.

Indeed, one has (
p

k + 1

)
=
p · · · (p− k)

(k + 1) · · · 1
,

and p appears as a factor only in the numerator, proving that this binomial coef-
ficient is divisible by p. Finally, we have a0 =

(
p
1

)
= p, so that p2 - a0 and we have

all the required conditions.

3. Let R = Z[i
√

5] = {a+ bi
√

5|a, b ∈ Z} ⊆ C.

1. Show that R is a ring, and determine R×. [Hint: Suppose that α ∈ R×. What
can we say about |α|2?]

2. Show that 2 · 3 = (1 + i
√

5) · (1 − i
√

5) are two non-equivalent factorizations of
6 ∈ R, so that R is not a UFD.

3. Prove that the ideal m = (2, 1 + i
√

5) ⊆ R is maximal but not principal. [Hint:
Compute R/m and deduce that m is maximal. Working by contradiction and
using irreducibility of 2, you can prove that m is not principal.]

Solution:

1. We define operations on R as in C, and we want to check that R is a subring of
C. This is easily done by noticing that 0, 1 ∈ R, and that for a, b, c, d ∈ Z one has

(a+ bi
√

5)− (c+ di
√

5) = (a− c) + (b− d)i
√

5 ∈ R

and

(a+ bi
√

5) · (c+ di
√

5) = (ac− 5bd) + (ad+ bc)i
√

5 ∈ R,

so that R is closed by multiplication, sum, and taking inverses. Let α = a+bi
√

5 ∈
R. Then |α|2 = αᾱ = a2 + 5b2 ∈ Z≥0. Then if α ∈ R×, and αβ = 1, we get
1 = 1 · 1̄ = αβᾱβ̄ = |α|2|β|2, and |α|2 can only be equal to 1 (as also |β|2 ∈ Z≥0).
Then 5b2 ≤ a2 + 5b2 = 1 implies that b = 0 and a = ±1, hence R× = {±1}.
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2. Let us first prove that 2 is irreducible. Suppose that 2 = αβ for α, β ∈ R. Then we
have 4 = |α|2|β|2, and |α|2, |β|2 ∈ Z≥0. Moreover, we have seen before in proving
the previous point that if |α|2 = 1 we get α = ±1 ∈ R×, and the same holds for
β. Hence the only possibility for the factorization αβ = 2 to be proper is that
|α| = |β| = 2, which is not possible since 5b2 ≤ a2 + 5b2 = 2 implies b = 0, and
a2 = 2 which cannot hold. Then 2 is an irreducible element of R.

As 2 clearly does not divide 1 ± i
√

5 (as (1 ± i
√

5)/2 ∈ Q[i
√

5] has non-integer
coefficients, so that it cannot lie in R because 1, i

√
5 are Q-linear independent

elements in C), we get that the two given factorizations of 6 cannot be equivalent,
so that R is not a UFD.

3. Let A = R/m. Notice that i
√

5 + m = −1 + m = 1 + m, so that a + bi
√

5 + m =
a+ b+ m. This suggests that A ∼= Z/2Z via

φ : A =
R

m
→ Z

2Z

a+ bi
√

5 + m 7→ a+ b+ 2Z.

Let us prove that the above is indeed a ring isomorphism. First, notice that we
have

a+ bi
√

5m = a′ + b′i
√

5m ⇐⇒ (a− a′)− (b− b′) ∈ 2Z ⇐⇒
⇐⇒ (a− a′) + (b− b′) ∈ 2Z ⇐⇒ (a− b)− (a′ − b′) ∈ 2Z,

which implies that φ is a well defined injective map. It is clear that φ is ad-
ditive, and that φ(0) = 0, φ(1) = 1, so that φ is surjective. Finally, we check
multiplicativity:

φ((a+ bi
√

5 + m)(c+ di
√

5 + m)) = φ((ac− 5bd) + (ad+ bc)i
√

5 + m) =

= ac+ bd+ ad+ bc+ 2Z = (a+ b+ 2Z)(c+ d+ 2Z)

= φ(a+ bi
√

5 + m) · φ(c+ di
√

5 + m).

Then R/m is isomorphic to the field Z/2Z, implying that m is maximal in R.

Now we prove by contradiction that m is not principal. Suppose by contradiction
that m = (γ). We have γ 6∈ R× (else it would generate the unit ideal R), and that
γ|2, so that being 2 irreducible we have γ = 2 · u, for some u ∈ R× (explicitly,
γ = ±2), so that (2, 1 + i

√
5) = (γ) = (2). Then 2|1 + i

√
5, which is false.

Contradiction. Hence m is not a principal ideal.


