Solutions of exercise sheet 9

The content of the marked exercises (*) should be known for the exam.

1. (*) Let K be a field.

- 1. Suppose that $P \in K[X]$ is a non-zero polynomial of degree d. Prove that P has at most d roots in K. [Hint: Exercise 2.3 from Exercise sheet 8].
- 2. Is the previous point also true if K is just supposed to be a division ring? [Hint: Exercise 1 from Exercise sheet 6].
- 3. Now suppose that K is an infinite field, and that $P \in K[X]$ is such that $P(\alpha) = 0$ for every $\alpha \in K$. Prove: P = 0 in K[X].
- 4. Still supposing that K is an infinite field, show that if $P \in K[X_1, \ldots, X_n]$ is such that for every $(\alpha_1, \ldots, \alpha_n) \in K^n$ one has $P(\alpha_1, \ldots, \alpha_n) = 0$, then P = 0 in $K[X_1, \ldots, X_n]$.

Solution:

1. Let $V(P) \subseteq K$ be the set of roots of the polynomial $P \in K[X]$. For every finite collection of distinct roots $\alpha_1, \ldots, \alpha_k \in V(P)$, we have that $(X - \alpha_i)|P$. Since the polynomials $X - \alpha_i$ have degree 1, and K is a field, we have that the only possible decompositions of $X - \alpha_i$ are of the form $c \cdot q(X)$ for some polynomial q(X) of degree 1 and constant $c \in K \setminus \{0\} = K^{\times}$. Hence the polynomials $X - \alpha_i$ are distinct irreducible elements in K[X] which all divide P. We claim that then

$$\prod_{i=1}^{k} (X - \alpha_i)|P \quad (*),$$

and being K a field we have $k = \deg(\prod_{i=1}^k (X - \alpha_i)) \le \deg P = d$. Hence all finite subsets of V(P) have cardinality $\le d$, implying that $|V(P)| \le d$, that is, P has at most d roots.

We are only left to prove the claim (*). This is true more in general for any UFD A (and A = K[X] is a UFD): if $\gamma_1, \ldots, \gamma_k$ are distinct irreducible elements dividing $f \in A$, then their product divides f as well. To prove it, we work by induction on k, the case k = 1 being trivial. So we can suppose that $\gamma_1 \cdot \cdots \cdot \gamma_{n-1} | f$, and write $f = \gamma_1 \cdot \cdots \cdot \gamma_{n-1} \cdot g$ for some $g \in A$. Decomposing g into irreducible and using uniqueness of decomposition into irreducible, we have that $\gamma_n | g$, and this gives our claim.

- 2. No, it is not true. For example, the polynomial $X^2 + 1 \in \mathbb{H}[X]$ vanishes on i, j and k (see Exercise 1 from Exercise sheet 6).
- 3. By contradiction, assume that $P \neq 0$. Then by Point 1 we have that P has less than $\deg(P)$ roots. Since every $\alpha \in K$ is a root, we get $\infty = |K| \leq \deg(P) < \infty$, contradiction.
- 4. We prove this by induction on n, the case n = 1 being proved in previous point. So we can prove the statement by supposing that it holds for n-1. For $d = \deg_{X_n}(P)$ and some $a_i \in K[X_1, \ldots, X_{n-1}]$, we can write

$$P(X_1, \dots, X_n) = \sum_{i=0}^{d} a_i(X_1, \dots, X_{n-1}) X_n^d.$$

Then for every $(\alpha_1, \ldots, \alpha_{n-1}) \in K^{n-1}$ we define

$$q_{\alpha_1,\dots,\alpha_{n-1}}(Y) = P(\alpha_1,\dots,\alpha_{n-1},Y) = \sum_{i=0}^d a_i(\alpha_1,\dots,\alpha_{n-1})Y^d \in K[Y],$$

and we observe that by construction $q_{\alpha_1,...,\alpha_{n-1}} \in K[Y]$ vanishes on all elements in K, so that by the previous point we have $q_{\alpha_1,...,\alpha_{n-1}}(Y) = 0$, meaning that for all i = 0, ..., d and $(\alpha_1, ..., \alpha_{n-1})$ we have $a_i(\alpha_1, ..., \alpha_{n-1}) = 0$, so that inductive hypothesis (applied on all the a_i 's) gives $a_i = 0$, which implies P = 0.

2. Let $p \in \mathbb{Z}$ be a positive prime number.

- 1. Prove that there exists a unique ring map $\mathbb{Z}[X] \to (\mathbb{Z}/p\mathbb{Z})[X]$ sending $X \mapsto X$, and that it is surjective. For $f \in \mathbb{Z}[X]$, we denote by \bar{f} its image via this map.
- 2. Let $f = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$ be such that $p|a_i$ for $i \in \{0, \ldots, n-1\}$ and $p \nmid a_n$. Prove that f is a monomial in $\mathbb{Z}/p\mathbb{Z}[X]$, and deduce that if f = gh in $\mathbb{Z}[X]$ with g and h non-constant polynomials, then $p^2|a_0$ [Hint: $\mathbb{Z}/p\mathbb{Z}$ is a field, hence $\mathbb{Z}/p\mathbb{Z}[X]$ is a principal ideal domain].
- 3. Conclude: if $f = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$ is such that $p^2 \nmid a_0, p \nmid a_n, p | a_i$ for $i \in \{0, \ldots, n-1\}$ and the coefficients a_0, \ldots, a_n are coprime, then f is an irreducible polynomial in $\mathbb{Z}[X]$. (This is known as Eisenstein's Criterion).
- 4. For $n \in \mathbb{Z}_{>1}$, we denote by W_n the set of primitive n-th roots of unity, and define the n-th cyclotomic polynomial

$$\Phi_n(t) := \prod_{\zeta \in W_n} (X - \zeta) \in \mathbb{C}[X].$$

For n = p a prime number, show that $\Phi_p(X) \in \mathbb{Z}[X]$, and that it is irreducible over $\mathbb{Z}[X]$. [Hint: First, find $(X-1)\Phi_p(X)$. Then take also in account the polynomial $Q(X) = \phi_p(X+1)$]

Solution:

1. Let $B = \mathbb{Z}/p\mathbb{Z}[X]$. Applying Exercise 1 from Exercise sheet 8 (in particular, parts 4 and 8) with $A = \mathbb{Z}$, we have that for every $b \in B$ and ring homomorphism $s : \mathbb{Z} \to B$ there exists a unique ring homomorphism $\lambda : \mathbb{Z}[X] \to B$ such that $X \mapsto b$ and $\mathbb{Z} \ni m \mapsto s(m)$. Of course, this association $(b, s) \mapsto \lambda$ gives all the ring homomorphisms $\lambda : \mathbb{Z}[X] \to B$, as from λ we can recover $b = \lambda(X)$ and $s = \lambda|_{\mathbb{Z}}$. But since $(\mathbb{Z}, +)$ is generated as abelian group by $1_{\mathbb{Z}}$, which is mapped to 1_B by any ring map $s : \mathbb{Z} \to B$, there exists a unique ring homomorphism $\mathbb{Z} \to B$, and hence a unique ring homomorphism $\gamma : \mathbb{Z}[X] \to B$ sending $X \mapsto X$.

More explicitly, we see that for $m \in \mathbb{Z}$ we have $\gamma(m) = \bar{m} := m + p\mathbb{Z}$, so that γ just reduces the coefficients of $f \in \mathbb{Z}[X]$ modulo p.

- 2. If $f = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$ is such that $p|a_i$ for $i \in \{0, \dots, n-1\}$ and $p \nmid a_n$, then $\bar{f} = \bar{a}_n X^n$ is a monomial, and as γ is a ring homomorphism, we have that f = gh implies $\bar{f} = \bar{g}\bar{h}$. Since $B = \mathbb{Z}/p\mathbb{Z}[X]$ is a UFD (as it is a principal ideal domain) where $X \in B$ is an irreducible element (by reasoning on the degrees of possible divisors), we have that \bar{g}, \bar{h} are monomials of some positive (by hypothesis) degrees d and e such that d + e = n. Then p divides all coefficients of g and h but the leading ones. Since the constant terms of f is the product of the constant terms of g and g, which are both divisible by g, we get that $g \nmid a_0$.
- 3. This follows immediately by assuming by contradiction that f is not irreducible, meaning that f = gh for some polynomials g, h which are not invertible. The two polynomials g and h need then to have positive degree, because if one of them were a non-invertible constant which would divide all the coefficients of f, contradiction with the fact that they are coprime. Then g, h have positive degree, and the previous point gives $p^2|a_0$, contradiction.
- 4. If $\zeta \in \mathbb{C}$ is a p-th root of unity, then $\zeta \in \mathbb{C}^{\times}$, and $|\zeta|^p = 1$ (by Exercise 2.1 of Exercise sheet 2), so that $|\zeta| = 1$. Then we can write $\zeta = \exp(\vartheta i) = \cos(\vartheta) + i\sin(\vartheta)$ for some $\vartheta \in \mathbb{R}$, and get

$$1 = \zeta^p = \exp(p\vartheta i),$$

which implies $\vartheta = 2k\pi/p$ for some $k \in \mathbb{Z}$. Notice that increasing k by p, the resulting ζ does not vary. Moreover, if ζ is a non-primitive root of unity, then it has as order (in \mathbb{C}^{\times}) a proper divisor of p, which gives $\zeta = 1$. So we have

$$W_p = \{\exp(2k\pi/p) : k = 1, \dots, p - 1\},\$$

and $(X-1) \cdot \phi_p(X) = \prod_{k=0}^n (X - \exp(2k\pi/p))$, a polynomial of degree p whose roots are all the p-th roots of unity. Since they are roots of $X^p - 1$, by applying Factorization Lemma as we did in Exercise 1.1 and using the fact that $\mathbb{C}[X]$ is a UFD, we can conclude that the two polynomials are the same up to a multiplicative constant, which has to be 1 (by comparing the leading coefficients). Hence

$$\phi_p(X) = \frac{X^p - 1}{X - 1} = X^{p-1} + X^{p-2} + \dots + X + 1 \in \mathbb{Z}[X].$$

Defining $Q(X) := \phi_p(X+1)$, we have that Q is irreducible if and only if ϕ_p is

(since their factorizations are in a degree-preserving correspondence). But

$$Q(X) = \phi_p(X+1) = \frac{(X+1)^p - 1}{X+1-1} = \sum_{i=1}^p \binom{p}{i} X^{i-1},$$

and we claim that Q satisfies the conditions to apply Eisenstein's Criterion. Then Q is irreducible over $\mathbb{Z}[X]$, and so is $\phi_p(X)$.

To prove the claim on Q(X), write $a_k = \binom{p}{k+1}$, so that $Q = \sum_{k=0}^{p-1} a_k X^k$. Then $a_{p-1} = \binom{p}{p} = 1$, so that $p \nmid a_{p-1}$ and the coefficients are all coprime. For $k = 0, \ldots, p-2$, we have $1 \leq k+1 \leq p-1$, and we shall prove that in this case $p \mid \binom{p}{k+1}$. Indeed, one has

$$\binom{p}{k+1} = \frac{p \cdots (p-k)}{(k+1) \cdots 1},$$

and p appears as a factor only in the numerator, proving that this binomial coefficient is divisible by p. Finally, we have $a_0 = \binom{p}{1} = p$, so that $p^2 \nmid a_0$ and we have all the required conditions.

- **3.** Let $R = \mathbb{Z}[i\sqrt{5}] = \{a + bi\sqrt{5} | a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.
 - 1. Show that R is a ring, and determine R^{\times} . [Hint: Suppose that $\alpha \in R^{\times}$. What can we say about $|\alpha|^2$?]
 - 2. Show that $2 \cdot 3 = (1 + i\sqrt{5}) \cdot (1 i\sqrt{5})$ are two non-equivalent factorizations of $6 \in R$, so that R is not a UFD.
 - 3. Prove that the ideal $\mathfrak{m}=(2,1+i\sqrt{5})\subseteq R$ is maximal but not principal. [Hint: Compute R/\mathfrak{m} and deduce that \mathfrak{m} is maximal. Working by contradiction and using irreducibility of 2, you can prove that \mathfrak{m} is not principal.]

Solution:

1. We define operations on R as in \mathbb{C} , and we want to check that R is a subring of \mathbb{C} . This is easily done by noticing that $0, 1 \in R$, and that for $a, b, c, d \in \mathbb{Z}$ one has

$$(a+bi\sqrt{5}) - (c+di\sqrt{5}) = (a-c) + (b-d)i\sqrt{5} \in R$$

and

$$(a+bi\sqrt{5})\cdot(c+di\sqrt{5}) = (ac-5bd) + (ad+bc)i\sqrt{5} \in R,$$

so that R is closed by multiplication, sum, and taking inverses. Let $\alpha = a + bi\sqrt{5} \in R$. Then $|\alpha|^2 = \alpha\bar{\alpha} = a^2 + 5b^2 \in \mathbb{Z}_{\geq 0}$. Then if $\alpha \in R^{\times}$, and $\alpha\beta = 1$, we get $1 = 1 \cdot \bar{1} = \alpha\beta\bar{\alpha}\bar{\beta} = |\alpha|^2|\beta|^2$, and $|\alpha|^2$ can only be equal to 1 (as also $|\beta|^2 \in \mathbb{Z}_{\geq 0}$). Then $5b^2 \leq a^2 + 5b^2 = 1$ implies that b = 0 and $a = \pm 1$, hence $R^{\times} = \{\pm 1\}$.

- 2. Let us first prove that 2 is irreducible. Suppose that $2 = \alpha\beta$ for $\alpha, \beta \in R$. Then we have $4 = |\alpha|^2 |\beta|^2$, and $|\alpha|^2, |\beta|^2 \in \mathbb{Z}_{\geq 0}$. Moreover, we have seen before in proving the previous point that if $|\alpha|^2 = 1$ we get $\alpha = \pm 1 \in R^{\times}$, and the same holds for β . Hence the only possibility for the factorization $\alpha\beta = 2$ to be proper is that $|\alpha| = |\beta| = 2$, which is not possible since $5b^2 \leq a^2 + 5b^2 = 2$ implies b = 0, and $a^2 = 2$ which cannot hold. Then 2 is an irreducible element of R.
 - As 2 clearly does not divide $1 \pm i\sqrt{5}$ (as $(1 \pm i\sqrt{5})/2 \in \mathbb{Q}[i\sqrt{5}]$ has non-integer coefficients, so that it cannot lie in R because $1, i\sqrt{5}$ are \mathbb{Q} -linear independent elements in \mathbb{C}), we get that the two given factorizations of 6 cannot be equivalent, so that R is not a UFD.
- 3. Let $A=R/\mathfrak{m}$. Notice that $i\sqrt{5}+\mathfrak{m}=-1+\mathfrak{m}=1+\mathfrak{m}$, so that $a+bi\sqrt{5}+\mathfrak{m}=a+b+\mathfrak{m}$. This suggests that $A\cong \mathbb{Z}/2\mathbb{Z}$ via

$$\phi: A = \frac{R}{\mathfrak{m}} \to \frac{\mathbb{Z}}{2\mathbb{Z}}$$
$$a + bi\sqrt{5} + \mathfrak{m} \mapsto a + b + 2\mathbb{Z}.$$

Let us prove that the above is indeed a ring isomorphism. First, notice that we have

$$a + bi\sqrt{5}\mathfrak{m} = a' + b'i\sqrt{5}\mathfrak{m} \iff (a - a') - (b - b') \in 2\mathbb{Z} \iff (a - a') + (b - b') \in 2\mathbb{Z} \iff (a - b) - (a' - b') \in 2\mathbb{Z},$$

which implies that ϕ is a well defined injective map. It is clear that ϕ is additive, and that $\phi(0) = 0$, $\phi(1) = 1$, so that ϕ is surjective. Finally, we check multiplicativity:

$$\phi((a+bi\sqrt{5}+\mathfrak{m})(c+di\sqrt{5}+\mathfrak{m})) = \phi((ac-5bd)+(ad+bc)i\sqrt{5}+\mathfrak{m}) =$$

$$= ac+bd+ad+bc+2\mathbb{Z} = (a+b+2\mathbb{Z})(c+d+2\mathbb{Z})$$

$$= \phi(a+bi\sqrt{5}+\mathfrak{m})\cdot\phi(c+di\sqrt{5}+\mathfrak{m}).$$

Then R/\mathfrak{m} is isomorphic to the field $\mathbb{Z}/2\mathbb{Z}$, implying that \mathfrak{m} is maximal in R. Now we prove by contradiction that \mathfrak{m} is not principal. Suppose by contradiction that $\mathfrak{m}=(\gamma)$. We have $\gamma\not\in R^\times$ (else it would generate the unit ideal R), and that $\gamma|2$, so that being 2 irreducible we have $\gamma=2\cdot u$, for some $u\in R^\times$ (explicitly, $\gamma=\pm 2$), so that $(2,1+i\sqrt{5})=(\gamma)=(2)$. Then $2|1+i\sqrt{5}$, which is false. Contradiction. Hence \mathfrak{m} is not a principal ideal.