Problem Set 1

1. (This exercise will be solved in the first exercise class.)

Let $p \in(1, \infty), \Omega \subseteq \mathbb{R}^{n}$ a bounded domain, $f \in L^{2}(\Omega)$ and define the functional

$$
E: L^{p}(\Omega) \cap H^{1}(\Omega) \rightarrow \mathbb{R}, u \mapsto \int_{\Omega} \frac{1}{2}|\nabla u|^{2} \pm \frac{1}{p}|u|^{p}+f u d x .
$$

Show that $E \in C^{1}\left(L^{p}(\Omega) \cap H^{1}(\Omega)\right)$.
2. Let $p \in(1, \infty), \Omega \subseteq \mathbb{R}^{n}$ a bounded domain, $n \geq 2, f \in L^{2}(\Omega)$ and define the functional

$$
E: H_{0}^{1}(\Omega) \rightarrow \mathbb{R} \cup\{ \pm \infty\}, u \mapsto \int_{\Omega} \frac{1}{2}|\nabla u|^{2} \pm \frac{1}{p}|u|^{p}+f u d x .
$$

For which p is $E \in C^{1}\left(H_{0}^{1}(\Omega)\right)$?
3. Let $\Omega \subseteq \mathbb{R}^{n}$ be bounded and let $f: \Omega \times \mathbb{R} \times \mathbb{R}^{n},(x, q, p) \mapsto f(x, q, p)$ be a smooth function. Define the functional

$$
E: C^{1}(\bar{\Omega}) \rightarrow \mathbb{R}, u \mapsto \int_{\Omega} f(x, u(x), \nabla u(x)) d x
$$

Suppose $u \in C^{1}(\bar{\Omega}) \cap C^{2}(\Omega)$ is a minimizer of E with respect to compactly supported variations in the sense that $E(u) \leq E(u+\varphi)$ for all $\varphi \in C_{c}^{1}(\Omega)$.
(a) Show that for this minimizing u the Euler-Lagrange equation holds:

$$
\frac{\partial f}{\partial q}(x, u(x), \nabla u(x))-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\frac{\partial f}{\partial p_{i}}(x, u(x), \nabla u(x))\right)=0 .
$$

(b) Let $a: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $b: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be smooth functions. Derive sufficient conditions on a and b such that

$$
-\operatorname{div}(a(x, u(x), \nabla u(x)))+b(x, u(x), \nabla u(x))=0
$$

is the Euler-Lagrange equation of a functional as defined above.

