Problem Set 10

1. Präsenzaufgabe: Pseudo-Gradient Vector Field. Let $S \subseteq \mathbb{R}^3$ be diffeomorphic to \mathbb{S}^2 and let $\pi: U_d S \to S$ be the nearest neighbour projection. Let

$$M=H^1(\mathbb{S}^1,S):=\{u\in H^1(\mathbb{S}^1,\mathbb{R}^3)\mid u(t)\in S \text{ for a.e. } t\}.$$

Let $E \in C^1(M)$ be any functional and \tilde{M} the regular values of E. A pseudo-gradient vector field for E is $e \colon \tilde{M} \to H^1(\mathbb{S}^1, \mathbb{R}^3)$ locally Lipschitz continuous such that $e(u) \in T_u M$ and satisfying for all $u \in \tilde{M}$:

$$\begin{split} \|e(u)\|_{T_{u}M} &< 1\\ \langle dE(u), e(u) \rangle_{T_{u}^{*}M \times T_{u}M} > \frac{1}{2} \|dE(u)\|. \end{split}$$

(a) Use the map $d\pi(u): H^1(\mathbb{S}^1, \mathbb{R}^3) \to T_u M$ to construct a pseudo-gradient vector field.

(b) Does this construction also work for an orientable closed submanifold $S \subseteq \mathbb{R}^n$, $n \ge 4$?

2. Flow Invariant Family. In the lecture we have seen that on any $S \subseteq \mathbb{R}^3$ which is diffeomorphic to the sphere \mathbb{S}^2 there is a nonconstant closed geodesic. For this we constructed a flow-invariant family \mathcal{F} , which consisted of 1-parameter families of closed curves inducing a map $p: \mathbb{S}^2 \to \mathbb{S}^2$ homotopic to the identity.

Assume now $S \subseteq \mathbb{R}^n$ is diffeomorphic to \mathbb{S}^{n-1} . Find a similar family \mathcal{F} and prove it is flow-invariant under any continuous 1-parameter family of homeomorphisms which maps constant paths to constant paths.

Hint: The (n-1)-dimensional sphere can be parametrized by $\varphi \in [0, 2\pi], \vartheta_i \in [0, \pi]$ via

$$\cos \varphi \sin \vartheta_1 \cdots \sin \vartheta_{n-2} = x_1$$
$$\sin \varphi \sin \vartheta_1 \cdots \sin \vartheta_{n-2} = x_2$$
$$\cos \vartheta_1 \cdots \sin \vartheta_{n-2} = x_3$$
$$\vdots$$
$$\vdots$$
$$\cos \vartheta_{n-2} = x_n.$$

3. Closed Geodesic. Use Exercise 2 to characterise a non-constant closed geodesic on S by a minimax-argument.