Problem Set 4

1. (This exercise will be solved in the exercise class.)

Let $n \geq 3$, $a \in C^0(\mathbb{R}^n)$ and assume $a(x) \to a_\infty > 0$, $|x| \to \infty$. Recall the functional

$$E: H^1(\mathbb{R}^n) \to \mathbb{R}, \quad u \mapsto \int_{\mathbb{R}^n} \left(|\nabla u(x)|^2 + a(x)|u(x)|^2 \right) dx$$

and the functional at infinity

$$E_{\infty} \colon H^1(\mathbb{R}^n) \to \mathbb{R}, \quad u \mapsto \int_{\mathbb{R}^n} \left(|\nabla u(x)|^2 + a_{\infty} |u(x)|^2 \right) dx$$

on $M := \{ u \in H^1(\mathbb{R}^n) \mid ||u||_{L^p} = 1 \}$, where 2 , as well as

$$I := \inf_{u \in M} E(u), \quad I_{\infty} := \inf_{u \in M} E_{\infty}(u)$$

We proved that $I < I_{\infty}$ is necessary and sufficient for the convergence of any minimzing sequence $(u_k) \subseteq M$ for E.

Assume now that $a(x) < a_{\infty}$ for all $x \in \mathbb{R}^n$ and prove that under this assumption $I < I_{\infty}$ holds.

2. Let $a \in C^0(\mathbb{R}^n)$ and suppose $a(x) \to a_\infty \in \mathbb{R}$ as $|x| \to \infty$. (No assumption on the sign of a_∞ .) Let 2 and consider the functional

$$E \colon H^1(\mathbb{R}^n) \to \mathbb{R}, \quad u \mapsto \int_{\mathbb{R}^n} \left(|\nabla u(x)|^2 - a(x) |u(x)|^p \right) \, dx$$

as well as the functional at infinity

$$E_{\infty} \colon H^1(\mathbb{R}^n) \to \mathbb{R}, \quad u \mapsto \int_{\mathbb{R}^n} \left(|\nabla u(x)|^2 - a_{\infty} |u(x)|^p \right) dx.$$

Let

$$M_{\lambda} = \{ u \in H^1(\mathbb{R}^n) \mid ||u||_{L^2(\mathbb{R}^n)}^2 = \lambda \}$$

and define

$$I_{\lambda} := \inf_{u \in M_{\lambda}} E(u), \quad I_{\lambda, \infty} := \inf_{u \in M_{\lambda}} E_{\infty}(u)$$

- (a) Show that E is coercive on M_{λ} by showing an inequality of the type $||u||_{p}^{p} \leq C ||\nabla u||_{2}^{\beta}$, where $0 < \beta < 2$.
- (b) Show that for all $\lambda \in [0, \infty)$ and for all $\alpha \in [0, \lambda]$ we have the inequality

$$I_{\lambda} \le I_{\alpha,\infty} + I_{\lambda-\alpha}.\tag{1}$$

- (c) Assume equality in (1) for some $\lambda > 0$ and some $\alpha \in (0, \lambda]$. Find a minimizing sequence for E on M_{λ} which is not relatively compact.
- (d) Let $\lambda > 0$. Prove that strict inequality in (1) for all $\alpha \in (0, \lambda]$ is equivalent to relative compactness of all minimizing sequences for E on M_{λ} .
- (e) Use the result from part (d) to show that if $a_{\infty} \leq 0$, then relative compactness of all minimizing sequences for E on M_{λ} is equivalent to $I_{\lambda} < 0$.

Hand in the solution by 22nd October 2014.