Problem Set 6

1. Brezis-Nirenberg: A Baby Yamabe Problem. Let $n \ge 3$ and $\Omega \subseteq \mathbb{R}^n$ a bounded domain of class C^2 . Consider the boundary value problem

$$\begin{cases} -\Delta u - \lambda u = u |u|^{2^* - 2} & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

The corresponding functional one needs to minimise is

$$E_{\lambda} \colon H_0^1(\Omega) \to \mathbb{R}$$
$$u \mapsto \int_{\Omega} |\nabla u(x)|^2 - \lambda |u(x)|^2 \, dx,$$

restricted to

$$M := \{ u \in H_0^1(\Omega) \mid ||u||_{2^*} = 1 \}.$$

Define

$$S_{\lambda} := \inf_{\substack{0 \neq u \in C_c^{\infty}(\Omega)}} \frac{E_{\lambda}(u)}{\|u\|_{2^*}^2},$$
$$\lambda_1 := \inf_{\substack{0 \neq u \in C_c^{\infty}(\Omega)}} \frac{\|\nabla u\|_2^2}{\|u\|_2^2} > 0.$$

The first Dirichlet eigenvalue λ_1 is indeed positive, see Satz and Bemerkung 9.4.1. from M. Struwe: FAII as a reference.

- (a) Show that E_{λ} is coercive for $\lambda < \lambda_1$.
- (b) Show that for all $\lambda \in \mathbb{R}$ it holds $S_{\lambda} \leq S_0 =: S$ and $S_{\lambda} = S$ for $\lambda \leq 0$.
- (c) Show that $S_{\lambda} < S$ for $\lambda < \lambda_1$ close enough to λ_1 .

(d) Show that for $\lambda < \lambda_1$ the condition $S_{\lambda} < S = S_0$ is necessary and sufficient for that each minimising sequence for E_{λ} on M has a weak H_0^1 -converging subsequence with limit in M.