Problem Set 7

1. Hodge *-Operator. Recall from the lecture that we defined the Hodge *-operator on \mathbb{R}^n by

$$*1 = dx^{1} \wedge dx^{2} \wedge \ldots \wedge dx^{n},$$

* $(a \cdot b) = a \wedge *b, \text{ for } k\text{-forms } a, b,$

where for $a = \sum_{1 \leq i_1 < \ldots < i_k \leq n} a_{i_1,\ldots,i_k} dx^{i_1} \wedge \ldots \wedge dx^{i_k}$ and $b = \sum_{1 \leq i_1 < \ldots < i_k \leq n} b_{i_1,\ldots,i_k} dx^{i_1} \wedge \ldots \wedge dx^{i_k}$ the inner product is

$$a \cdot b = \sum_{1 \le i_1 < \dots < i_k \le n} a_{i_1,\dots,i_k} b_{i_1,\dots,i_k}.$$

Define the Hodge differential d^* as $d^*\omega = *d*\omega$ and the Hodge Laplacian as $\Delta = d^*d + dd^*$.

(a) Let $u \in W^{1,n}(\Omega; \mathbb{R}^n)$, where $\Omega \subseteq \mathbb{R}^n$. Show that $* \det(du) = du^1 \wedge \ldots \wedge du^n$.

(b) Let $a = \sum_{i=1}^{n} a_i dx^i$ be a 1-form. Show that d^*a equals the divergence of the corresponding vector field $(a_1, \ldots, a_n) \colon \Omega \to \mathbb{R}^n$.

(c) Let $f \in C^{\infty}(\Omega)$. Show that $(d^*d + dd^*)f = \operatorname{div} \nabla f$, the usual Laplacian of f.

2. Area Functional. Let $\Omega \subseteq \mathbb{R}^n$ be a bounded domain. Consider the functional

$$E: W^{1,1}(\Omega) \to \mathbb{R}$$
$$u \mapsto \int_{\Omega} \sqrt{1 + |\nabla u(x)|^2} - 1 \, dx.$$

The Gateaux derivative of E is given by

$$dE(u)v = \int_{\Omega} \frac{\nabla u(x) \cdot \nabla v(x)}{\sqrt{1 + |\nabla u(x)|^2}} \, dx.$$

- (a) Show that E is not Fréchet differentiable at any $u_0 \in W^{1,1}(\Omega)$.
- (b) Show that the map

$$W^{1,1}(\Omega) \to (W^{1,1}(\Omega))^*$$
$$u \mapsto dE(u)$$

is not continuous.