Problem Set 9

1. Präsenzaufgabe. Let $\Omega \subseteq \mathbb{R}^n$ be a smooth, bounded domain, where $n \geq 3$. Consider

$$\begin{cases} -\Delta u = g(\cdot, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1)

where $g: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function. The corresponding functional is

$$E: H_0^1(\Omega) \to \mathbb{R} \cup \{\pm \infty\}$$
$$u \mapsto \frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 \, dx - \int_{\Omega} G(x, u(x)) \, dx,$$

where $G(x,s) = \int_0^s g(x,t) dt$ is the primitive of g. Assume the following conditions:

- 1. g(x,0) = 0 and $\limsup_{s \to 0} \frac{g(x,s)}{s} \le 0$ uniformly in $x \in \Omega$.
- 2. There is $p < 2^*$ and a constant C such that $|g(x,s)| \leq C(1+|s|^{p-1})$ for almost every $x \in \Omega, s \in \mathbb{R}$.
- 3. There is q > 2 and a radius R_0 such that $0 < qG(x,s) \le g(x,s)s$ for almost every $x \in \Omega$, if $|s| \ge R_0$.

Show that $E \in C^1(H_0^1(\Omega))$ and that E satisfies $(P.-S.)_\beta$ for all $\beta \in \mathbb{R}$.

2. Boundary Value Problem. Consider the setting from Exercise 1. Show that one can apply the mountain pass Lemma to the functional E and use it to prove that there are non-trivial solutions $u^+ \ge 0 \ge u^-$ of the boundary value problem (1).

Hint: Consider the function

$$g^{+}(x,u) = \begin{cases} g(x,u) & u > 0\\ 0 & u \le 0 \end{cases}$$

to find a solution u^+ and a similar function to find u^- .

3. Three Distinct Solutions. Let $\Omega \subseteq \mathbb{R}^3$ be a bounded domain and let $0 < \lambda_1 < \lambda_2 \le \lambda_3 \le \ldots$ be the eigenvalues of $-\Delta$ on $H_0^1(\Omega) \cap H^2(\Omega)$. Consider for $f \in L^2(\Omega)$ the problem

$$\begin{cases} -\Delta u = \lambda u - u^3 + f & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

Prove that for each $\lambda \in (\lambda_1, \lambda_2)$ there is a constant $C(\lambda)$ such that for $||f||_2 < C(\lambda)$, there are at least three distinct solutions of this problem. Proceed as follows:

(a) Consider the functional

$$E \colon H_0^1(\Omega) \to \mathbb{R}$$
$$u \mapsto \frac{1}{2} \int_{\Omega} \left(|\nabla u|^2 - \lambda u^2 \right) dx + \frac{1}{4} \int_{\Omega} |u|^4 \, dx - \int_{\Omega} uf \, dx.$$

Show that E attains minima $u^{\pm} \in M^{\pm}$, where

$$M^{+} := \{ u \in H_{0}^{1}(\Omega) \mid (u, e_{1})_{H_{0}^{1}} > 0 \},\$$
$$M^{-} := \{ u \in H_{0}^{1}(\Omega) \mid (-u, e_{1})_{H_{0}^{1}} > 0 \},\$$

where e_1 is the first eigenfunction of $-\Delta$ and where the scalar product is

$$(u,v)_{H^1_0} := \int_{\Omega} \nabla u \cdot \nabla v \, dx.$$

(b) Use Theorem 2.3.2. from the lecture to find a third critical value.