Solution 1

1. The Gateaux derivative of E can be computed as follows:

$$
\begin{aligned}
D E(u) v & =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} E(u+\varepsilon v) \\
& =\int_{\Omega} \nabla u \cdot \nabla v \pm|u|^{p-2} u v+f v d x .
\end{aligned}
$$

We need to show $D E(u)$ is a bounded, linear (i.e. continuous) functional on $L^{p} \cap H^{1}(\Omega)$ for each u. Therefore we use Hölder three times to estimate:

$$
\begin{aligned}
D E(u) v= & \int_{\Omega} \nabla u \cdot \nabla v \pm|u|^{p-2} u v+f v d x \\
\leq & \left(\int_{\Omega}|\nabla u|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\Omega}|\nabla v|^{2} d x\right)^{\frac{1}{2}}+\left(\int_{\Omega}|u|^{p} d x\right)^{\frac{p-1}{p}}\left(\int_{\Omega}|v|^{p} d x\right)^{1 / p}+\ldots \\
& \ldots+\left(\int_{\Omega} f^{2}\right)^{\frac{1}{2}}\left(\int_{\Omega} v^{2}\right)^{\frac{1}{2}} \\
= & \|\nabla u\|_{2}\|\nabla v\|_{2}+\|u\|_{p}^{p-1}\|v\|_{p}+\|f\|_{2}\|v\|_{2} \\
\leq & C(u)\left(\|v\|_{H^{1}}+\|v\|_{p}\right) .
\end{aligned}
$$

$\|v\|_{H^{1}}+\|v\|_{p}$ is one of several equivalent norms on $L^{p}(\Omega) \cap H^{1}(\Omega)$, so $\|D E(u)\|_{\text {op }} \leq C(u)$.
Finally we need to show that the map $L^{p}(\Omega) \cap H^{1}(\Omega) \rightarrow\left(L^{p}(\Omega) \cap H^{1}(\Omega)\right)^{*}, u \mapsto D E(u)$ is continuous. Therefore, let $u_{0} \in L^{p}(\Omega) \cap H^{1}(\Omega)$ arbitrary and u close enough to u_{0} (will be determined later). Then:

$$
\begin{aligned}
\left\|D E(u)-D E\left(u_{0}\right)\right\|_{\mathrm{op}} & =\sup _{\|v\|=1}\left|D E(u) v-D E\left(u_{0}\right) v\right| \\
& =\sup \left|\int_{\Omega}\left(\nabla u-\nabla u_{0}\right) \cdot \nabla v \pm\left(|u|^{p-2} u-\left|u_{0}\right|^{p-2} u\right) v d x\right| \\
& \leq \sup \left\|\nabla u-\nabla u_{0}\right\|_{2}\|\nabla v\|_{2}+\int_{\Omega}\left(|u|^{p-2} u-\left|u_{0}\right|^{p-2} u\right) v d x,
\end{aligned}
$$

where we used Hölder as above. (The f-term vanishes.) The first term converges to 0 , if $u \rightarrow u_{0}$ in H^{1}. For the second term, we use the following Theorem:

Theorem. Let $g: \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a Carathéodory function. If the non-linear operator

$$
\begin{aligned}
T: L^{p}(\Omega) & \rightarrow L^{q}(\Omega) \\
u & \mapsto g(\cdot, u(\cdot))
\end{aligned}
$$

is well-defined, then it is also continuous.
The proof of this Theorem (and the definition of Carathéodory function) will be given below in an Appendix. One can solve the last part as well using Example 3.4.2. from M.Struwe: Analysis III / Mass und Integral, which is almost the same statement.

To use the theorem we realize that $T: L^{p}(\Omega) \rightarrow L^{\frac{p}{p-1}}(\Omega), u \mapsto|u|^{p-2} u$ is well-defined, where $g(x, u)=|u|^{p-2} u$. So the Theorem states that if $\left\|u-u_{0}\right\|_{p} \rightarrow 0$, then $\left\||u|^{p-2} u-\left|u_{0}\right|^{p-2} u\right\|_{\frac{p}{p-1}} \rightarrow$ 0 and therefore

$$
\left(\int_{\Omega}\left(|u|^{p-2} u-\left|u_{0}\right|^{p-2} u\right) v d x\right)^{p} \leq\left\||u|^{p-2} u-\left|u_{0}\right|^{p-2} u\right\|_{\frac{p}{p-1}}^{p-1}\|v\|_{p} \rightarrow 0, \text { as } u \rightarrow u_{0} .
$$

This implies $E \in C^{1}$, which then also shows that the Gateaux-derivative is in fact the Fréchet-derivative.
2. Recall the Sobolev-embedding: For $n=2$ we have $H_{0}^{1}(\Omega) \hookrightarrow L^{q}(\Omega)$, for all $1<q<\infty$. For $n>2$ we have $H_{0}^{1}(\Omega) \hookrightarrow L^{q}(\Omega)$ for $1<q \leq \frac{2 n}{n-2} ; \frac{2 n}{n-2}$ is the Sobolev exponent.
Using Exercise 1 we therefore have that $E \in C^{1}\left(H_{0}^{1}(\Omega)\right)$ if either $n=2$ and $1<p<\infty$ of if $n>2$ and $1<p \leq \frac{2 n}{n-2}$.

If $n>2$ and $p>\frac{2 n}{n-2}$, there exist functions in $H_{0}^{1}(\Omega)$ not lying in $L^{p}(\Omega)$. For such a function $u, D E(u)$ is not well defined as can be seen when inserting $v=u$.
3. (a) The Euler-Lagrange equation is given by $D E(u)=0$. In this case we have

$$
\begin{aligned}
D E(u) v & =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \int_{\Omega} f(x, u+\varepsilon v, \nabla u+\varepsilon \nabla v) d x \\
& =\int_{\Omega} \frac{\partial f}{\partial q}(x, u, \nabla u) v+\sum_{i=1}^{n}\left(\frac{\partial f}{\partial p_{i}}(x, u, \nabla u)\right) \frac{\partial v}{\partial x_{i}} d x \\
& =\int_{\Omega} \frac{\partial f}{\partial q}(x, u, \nabla u) v-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\frac{\partial f}{\partial p_{i}}(x, u, \nabla u)\right) v d x .
\end{aligned}
$$

This has to vanish for all $v \in H_{0}^{1}$, so we have by the fundamental lemma of calculus of variations and as $u \in C^{2}$:

$$
\frac{\partial f}{\partial q}(x, u, \nabla u)-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\frac{\partial f}{\partial p_{i}}(x, u, \nabla u)\right)=0 .
$$

(b) (This is one possible solution, there are other conditions, which are sufficient.)

$$
\begin{aligned}
\operatorname{div}(a(x, u(x), \nabla u(x)))+b(x, u(x), \nabla u(x)) & =0 \\
\Rightarrow \int_{\Omega}(-\operatorname{div}(a(x, u(x), \nabla u(x)))+b(x, u(x), \nabla u(x))) v d x & =0 \text { for all } v \\
\Rightarrow \int_{\Omega} a(x, u(x), \nabla u(x)) \cdot \nabla v+b(x, u(x), \nabla u(x)) v d x & =0
\end{aligned}
$$

Comparing with the calculations in (a) we have to find f satisfying:

$$
\begin{aligned}
& \frac{\partial f}{\partial q}(x, u, \nabla u)=b(x, u, \nabla u) \\
& \frac{\partial f}{\partial p_{i}}(x, u, \nabla u)=a_{i}(x, u, \nabla u) \text { for all } i,
\end{aligned}
$$

where a_{i} means the i-th component of a. It exists a function f satisfying these if we have:

$$
\begin{aligned}
& \frac{\partial b}{\partial p_{i}}=\frac{\partial a_{i}}{\partial q} \text { for all } i, \text { and } \\
& \frac{\partial a_{i}}{\partial p_{j}}=\frac{\partial a_{j}}{\partial p_{i}} \text { for all } i \text { and } j .
\end{aligned}
$$

Appendix: Proof of the Theorem We prove a slightly generalized version, the proof follows M. Krasnosel'skii: Topological Methods in the Theory of Nonlinear Integral Equations.

Definition 1 (Carathéodory function). Let U and V be topological spaces and $(\Omega, \mathcal{A}, d x)$ a measure space. $f: \Omega \times U \rightarrow V$ is called Carathéodory function if
(i) $\quad f(\cdot, u): \Omega \rightarrow V$ is measurable for each $u \in U$,
(ii) $\quad f(x, \cdot): U \rightarrow V$ is continuous for each $x \in \Omega$.

Theorem 2. Let $g: \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a Carathéodory function. If the non-linear operator

$$
\begin{aligned}
T: L^{p}(\Omega) & \rightarrow L^{q}(\Omega) \\
u & \mapsto g(\cdot, u(\cdot))
\end{aligned}
$$

is well-defined, then it is also continuous.

For the proof we use the following Lemma:
Lemma 3 (Nemytskii). Let $|\Omega|<\infty$. Then the operator T preserves convergence in measure.
Proof. Let $\left\{u_{n}\right\}_{n} \subset L^{p}(\Omega)$ be a sequence converging in measure to $u \in L^{p}(\Omega)$.
Fix $\varepsilon>0$ and define the subsets

$$
G_{n}^{(k)}=\left\{\left.x \in \Omega| | u(x)-u_{n}(x)\left|<\frac{1}{k} \Rightarrow\right| g(x, u(x))-g\left(x, u_{n}(x)\right) \right\rvert\,<\varepsilon\right\} .
$$

Clearly $G_{n}^{(k)} \subset G_{n}^{(k+1)}$ for all k. We view x as a parameter and appeal to the continuity of $g(x, \cdot)$ for any $x \in \Omega$ to obtain

$$
\bigcup_{k \in \mathbb{N}} G_{n}^{(k)}=\Omega .
$$

(Otherwise, $\xi \in \Omega$ exists with $\left|u(\xi)-u_{n}(\xi)\right|<\frac{1}{k}$ for any k but $\left|g(\xi, u(\xi))-g\left(\xi, u_{n}(\xi)\right)\right| \geq \varepsilon$ which contradticts the continuity of $g(\xi, \cdot))$

Fix $\eta>0$ and choose $k_{0} \in \mathbb{N}$ such that $G_{n}:=G_{n}^{\left(k_{0}\right)}$ satisfies

$$
\left|\Omega \backslash G_{n}\right|<\frac{\eta}{2} .
$$

Now, we consider the subsets

$$
\begin{aligned}
U_{n} & =\left\{x \in \Omega| | u(x)-u_{n}(x) \left\lvert\,<\frac{1}{k_{0}}\right.\right\}, \\
D_{n} & =\left\{x \in \Omega| | g(x, u(x))-g\left(x, u_{n}(x)\right) \mid<\varepsilon\right\} .
\end{aligned}
$$

Convergence $u_{n} \rightarrow u$ in measure implies that there exists $N \in \mathbb{N}$ such that for all $n \geq N$

$$
\left|\Omega \backslash U_{n}\right|<\frac{\eta}{2} .
$$

From $U_{n} \cap G_{n} \subset D_{n}$ we conclude

$$
\left|\Omega \backslash D_{n}\right| \leq\left|\Omega \backslash\left(U_{n} \cap G_{n}\right)\right|=\left|\left(\Omega \backslash U_{n}\right) \cup\left(\Omega \backslash G_{n}\right)\right| \leq\left|\Omega \backslash U_{n}\right|+\left|\Omega \backslash G_{n}\right|<\eta
$$

for all $n \geq N$ which implies convergence $T u_{n} \rightarrow T u$ in measure as $\varepsilon, \eta>0$ were arbitrary.
Proof of the Theorem. We prove the Theorem for spaces of finite measure $|\Omega|<\infty$. First we show continuity at 0 . If T is not continuous in $0 \in L^{p}(\Omega)$, then there exists a sequence $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}} \subset L^{p}(\Omega)$ and some $a>0$ such that

$$
\left\|\varphi_{n}\right\|_{p} \xrightarrow{n \rightarrow \infty} 0, \quad\left\|T \varphi_{n}\right\|_{q}>a^{\frac{1}{q}} \quad \forall n \in \mathbb{N}
$$

We construct numbers $\varepsilon_{k}>0$, sets $G_{k} \subset \Omega$ and a subsequence $\left\{n_{k}\right\}_{k}$ such that

$$
\begin{equation*}
\varepsilon_{k+1}<\frac{1}{2} \varepsilon_{k}, \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\left|G_{k}\right| \leq \varepsilon_{k} \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
\int_{G_{k}}\left|T \varphi_{n_{k}}\right|^{q} d x>\frac{2}{3} a \tag{c}
\end{equation*}
$$

(d) $\quad \forall D \subset \Omega,|D|<2 \varepsilon_{k+1}: \int_{D}\left|T \varphi_{n_{k}}\right|^{q} d x<\frac{1}{3} a$
inductively. Let the induction start at $\varepsilon_{1}=|\Omega|, G_{1}=\Omega$ and $n_{1}=1$. Suppose (b) and (c) hold up to $k \in \mathbb{N}$ with $\varepsilon_{k}, n_{k}, G_{k}$ already known. There exists $\varepsilon_{k+1}>0$ such that (d) holds. This is due to $T \varphi_{n_{k}} \in L^{q}(\Omega)$. The number ε_{k+1} automatically satisfies (a) since $\varphi_{n_{k}}$ satisfies (c). Depending on ε_{k+1}, there exist $n_{k+1} \in \mathbb{N}$ and $G_{k+1} \subset \Omega$ such that

$$
\left|T \varphi_{n_{k+1}}\right|^{q} \leq \frac{a}{3|\Omega|} \quad \text { in } \Omega \backslash G_{k+1} \text { and }\left|G_{k+1}\right|<\varepsilon_{k+1}
$$

This follows as $T \varphi_{n}$ converges in measure to zero according to the Lemma. Therefore, (b) holds also for $k+1$. It remains to verify, that $\varphi_{n_{k+1}}$ and G_{k+1} satisfy (c). Indeed,

$$
\int_{G_{k+1}}\left|T \varphi_{n_{k+1}}\right|^{q} d x=\int_{\Omega}\left|T \varphi_{n_{k+1}}\right|^{q} d x-\int_{\Omega \backslash G_{k+1}}\left|T \varphi_{n_{k+1}}\right|^{q} d x>a-\frac{1}{3} a=\frac{2}{3} a .
$$

Consider the disjoint subsets

$$
D_{k}=G_{k} \backslash \bigcup_{j=k+1}^{\infty} G_{j}
$$

and observe that by conditions (a) and (b)

$$
\left|G_{k} \backslash D_{k}\right|=\left|\bigcup_{j=k+1}^{\infty} G_{j}\right| \leq \sum_{j=k+1}^{\infty} \varepsilon_{j}<2 \varepsilon_{k+1} .
$$

Let $\psi: \Omega \rightarrow \mathbb{R}$ be given by the following concatenation

$$
\psi(x)= \begin{cases}\varphi_{n_{k}}(x), & \text { if } k \in \mathbb{N} \text { with } x \in D_{k} \text { exists } \\ 0 & \text { otherwise }\end{cases}
$$

When choosing $\varphi_{n} \rightarrow 0$, we may assume $\sum_{n=1}\left\|\varphi_{n}\right\|_{p}<\infty$ or switch to a subsequence with this property. Therefore, clearly $\psi \in L^{p}(\Omega)$. Since T is well-defined, $T \psi \in L^{q}(\Omega)$. However, for any any $k \in \mathbb{N}$

$$
\int_{D_{k}}|T \psi|^{q} d x=\int_{D_{k}}\left|T \varphi_{n_{k}}\right|^{q} d x \geq \int_{G_{k}}\left|T \varphi_{n_{k}}\right|^{q} d x-\int_{G_{k} \backslash D_{k}}\left|T \varphi_{n_{k}}\right|^{q} d x>\frac{2}{3} a-\frac{1}{3} a=\frac{1}{3} a,
$$

as $\left|G_{k} \backslash D_{k}\right|<2 \varepsilon_{k+1}$. Recalling that the subsets D_{k} are disjoint, a contradiction to $T \psi \in L^{q}$ arises through

$$
\int_{\Omega}|T \psi|^{q} d x \geq \sum_{k=1}^{\infty} \int_{D_{k}}|T \psi|^{q} d x=\infty
$$

Consequently, $T: L^{p} \rightarrow L^{q}$ cannot be well-defined at ψ, if it is not continuous in 0 . Let us now deduce continuity of T at any $u_{0} \in L^{p}(\Omega)$.

$$
\tilde{g}(x, u)=g\left(x, u_{0}+u\right)-g\left(x, u_{0}\right)
$$

is a Carathéodory function inducing a well-defined Operator $\tilde{T}: L^{p} \rightarrow L^{q}$ with $T 0=0$. As shown above, \tilde{T} is continuous in 0 . But this implies that $T: u \mapsto g(\cdot, u)$ is continuous in u_{0}.

