Solution 10

1. Präsenzaufgabe: Pseudo-Gradient Vector Field.

(a) The idea is as follows: The map $d \pi(u): H^{1}\left(\mathbb{S}^{1}, \mathbb{R}^{3}\right) \rightarrow T_{u} M$ is surjective, so we can find any $w=w(u) \in H^{1}\left(\mathbb{S}^{1}, \mathbb{R}^{3}\right)$ such that $d \pi(u) w \in T_{u} M$ satisfies the desired conditions. Then for all $v \in M$, the element $d \pi(v) w \in T_{v} M$ is defined. We claim that there is some neighbourhood U_{u} of u such that $d \pi(v) w$ satisfies the desired properties for all $v \in U_{u}$. If this is proven we then proceed as usual by taking a locally finite refinement of the cover $\left\{U_{u}\right\}$ and a Lipschitz continuous partition of unity to sum up the corresponding vectors.

To prove the claim, recall that

$$
\|(d \pi(u)-d \pi(v)) w\|_{H^{1}} \leq C\|\nu(u)-\nu(v)\|_{H^{1}}\|w\|_{H^{1}}
$$

where both $d \pi(u) w$ and $d \pi(v) w$ are viewed as elements of H^{1}. As the normal vector field ν is smooth, and both u and v are (Hölder) continuous by Sobolev embedding, we can make this difference arbitrarily small and therefore $\|d \pi(v) w\|<1$ for v close to u. From smoothness it also follows that $d \pi(v) w$ is Lipschitz in a neighbourhood around u. As $E \in C^{1}(M)$ also $d E(u)$ depends continuously on u and therefore $\langle d E(v), d \pi(v) w\rangle_{T_{v}^{*} M \times T_{v} M}>\frac{1}{2}\|d E(v)\|$ will as well be satisfied for v close enough to u.
(b) The above construction nowhere used that $S \subseteq \mathbb{R}^{3}$, so it works analogue in the case of a hypersurface in \mathbb{R}^{n}. If the codimension $\operatorname{codim}\left(S, \mathbb{R}^{n}\right)>1$, then we no longer have a normal vector field but instead a normal vector bundle (whose dimension is $k=\operatorname{codim}\left(S, \mathbb{R}^{n}\right)$). Then we choose an ONB $e_{1}(x), \ldots, e_{k}(x)$ of the normal vector bundle, depending continuously on $x \in S$ and then $d \pi(x) v=v-\left(e_{1}(x) \cdot v\right) e_{1}(x)-\ldots-\left(e_{k}(x) \cdot v\right) e_{k}(x)$. The proof works then similarly.
2. Flow Invariant Family. Let

$$
\begin{aligned}
\tilde{P} & =\left\{p \in C^{0}\left([0, \pi]^{n-2} ; H^{1}\left(\mathbb{S}^{1}, S\right)\right\} .\right. \\
P & =\left\{p \in \tilde{P} \mid p\left(\vartheta_{1}, \ldots, \vartheta_{n-2}\right) \text { is a constant path if it exists } i: \vartheta_{i} \in\{0, \pi\}\right\} .
\end{aligned}
$$

Each $p \in P$ then induces a map $p: \mathbb{S}^{n-1} \rightarrow S$ using the parametrization of \mathbb{S}^{n-1} via $S^{1} \times[0, \pi]^{n-2}$. Call the diffeomorphism $\Psi: S \rightarrow \mathbb{S}^{n-1}$. Then we define the familiy

$$
\mathcal{F}=\left\{p \in P \mid \Psi\left(p\left(\vartheta_{1}, \ldots, \vartheta_{n-2}\right)(\varphi)\right) \text { is homotopic to } i d: \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1}\right\} .
$$

Let now $\Phi(t)$ be a 1-parameter family of homeomorphisms of $H^{1}\left(\mathbb{S}^{1}, S\right)$. Note that $\Phi(0)=i d$. Let $p \in \mathcal{F}$, i.e. the map $\Psi\left(p\left(\vartheta_{1}, \ldots, \vartheta_{n-2}\right)(\varphi)\right)$ is homotopic to the identity.
$\Phi(1) \circ p:[0, \pi]^{n-2} \rightarrow H^{1}\left(\mathbb{S}^{1}, S\right)$ is homotopic to p via the homotopy $\Phi(t) \circ p$. (Note that all $\Phi(t) \circ p$ are in particular elements of P, because $\Phi(t)$ maps constant maps to constant maps.) Then we can use this homotopy in the sense of

$$
\left(\varphi, \vartheta_{1}, \ldots, \vartheta_{n-2}, t\right) \mapsto \Psi\left(\Phi(t) \circ p\left(\vartheta_{1}, \ldots, \vartheta_{n-2}\right)(\varphi)\right)
$$

to show that $\Psi\left(p\left(\vartheta_{1}, \ldots, \vartheta_{n-2}\right)(\varphi)\right)$ is homotopic to $\Psi\left(\Phi(1) \circ p\left(\vartheta_{1}, \ldots, \vartheta_{n-2}\right)(\varphi)\right)$ which implies that the latter is homotopic to the identity, so \mathcal{F} is Φ-invariant.
3. Closed Geodesic. With exactly the same steps as in the lecture we can show that E satisfies (P.-S.) β for all $\beta \in \mathbb{R}$. As the family \mathcal{F} is flowinvariant, we know that

$$
\beta=\inf _{p \in \mathcal{F}} \sup _{\vartheta_{i} \in[0, \pi]} E\left(p\left(\vartheta_{1}, \ldots \vartheta_{n-2}\right)\right)
$$

is a critical value. We now need to show two things: If $d E(u)=0$ for some u, then u is a closed geodesic and on the other hand that $\beta>0$ so that the closed geodesic we obtain is not a trivial one.

Assume $d E(u)=0$. Then for every $\varphi \in H^{1}\left(\mathbb{S}^{1}, \mathbb{R}^{n}\right)$:

$$
\begin{aligned}
0 & =\langle d E(u), \varphi-\nu(u)(\nu(u) \cdot \varphi)\rangle \\
& =\int_{0}^{1} \dot{u} \dot{\varphi}-\dot{u} \frac{d}{d s}(\nu(u)(\nu(u) \cdot \varphi)) d s \\
& =\int \dot{u} \dot{\varphi}-\dot{u} \cdot \frac{d}{d s}(\nu(u))(\nu(u) \cdot \varphi) d s,
\end{aligned}
$$

because $\dot{u}(x)$ lies in the tangent space $T_{u(s)} S$ and therefore is orthogonal to $\nu(u(s))$. So we get that in the sense of distributions

$$
\begin{equation*}
\ddot{u}=-(\dot{u} \cdot d \nu(u) \dot{u}) \nu(u) . \tag{1}
\end{equation*}
$$

$\dot{u} \cdot d \nu(u) \dot{u}$ is an L^{1}-function whereas $\nu(u)$ is bounded. So $u \in W^{2,1} \hookrightarrow C^{1}$. Then $\dot{u} \in C^{0}$ and again by the above formula $u \in C^{2}$ and in particular it satisfies (1) as function (not just in the distributional sense), i.e. \ddot{u} is proportional to $\nu(u)$ or, in other words, orthogonal to the tangent space. This is the definition of a geodesic.

To prove that $\beta>0$ we first bound the diameter of a function $u \in H^{1}\left(\mathbb{S}^{n}, \mathbb{R}^{n}\right)$ by

$$
|u(t)-u(s)| \leq \int_{s}^{t}|u(r)| d r \leq \sqrt{|t-s|}(2 E(u))^{\frac{1}{2}}, \quad 0 \leq t, s \leq 1
$$

This is $<d$ (the radius in which the nearest neighbour projection is defined) if $E(u)<\frac{d^{2}}{2}=: \beta_{0}$. We will show that $\beta \geq \beta_{0}$.

Assume not. Then there is $p \in \mathcal{F}$ satisfying $\sup _{\vartheta_{1}, \ldots, \vartheta_{n-2} \in[0, \pi]} E\left(p\left(\vartheta_{1}, \ldots \vartheta_{n-2}\right)\right)<\beta_{0}$. We will prove that p is homotopic to a constant map. This gives then a contradiction, as $\Phi \circ p$ was assumed to be homotopic to the identiy and the identiy map $\mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1}$ is not homotopic to a trivial map.

Consider the following homotopy:

$$
\begin{aligned}
h\left(\vartheta_{1}, \ldots, \vartheta_{n-2}, s\right)(\varphi) & =\pi\left(p\left(\vartheta_{1}, \ldots, \vartheta_{n-2}\right)(0)+s\left(p\left(\vartheta_{1}, \ldots, \vartheta_{n-2}\right)(\varphi)-p\left(\vartheta_{1}, \ldots, \vartheta_{n-2}\right)(0)\right)\right) \\
& =\pi\left(s p\left(\vartheta_{1}, \ldots, \vartheta_{n-2}\right)(\varphi)+(1-s) p\left(\vartheta_{1}, \ldots, \vartheta_{n-2}\right)(0)\right) .
\end{aligned}
$$

From the first form we see that this is indeed well defined because $\left|p\left(t^{\prime}\right)-p(t)\right|<d$ for all choices of choices of t and t^{\prime} as caluculated above. From the second form we see that this is a homotopy between $p\left(\vartheta_{1}, \ldots, \vartheta_{n-2}\right)(\varphi)$ and the constant maps $p\left(\vartheta_{1}, \ldots, \vartheta_{n-2}\right)(0)$. We can now find a further homotopiy contracting this to a constant map:

$$
\tilde{h}\left(\vartheta_{1}, \ldots \vartheta_{n-2}, s_{1}\right)(\varphi)=p\left(s_{1} \vartheta_{1} \ldots \vartheta_{n-2}\right)(0)
$$

which contracts everything to the map $\tilde{p}\left(\vartheta_{1}, \ldots, \vartheta_{n-2}\right)(\varphi)=p\left(0, \vartheta_{1}, \ldots, \vartheta_{n-2}\right)(\varphi)$, which is a constant map by definition of \mathcal{F}.

