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Solution 10

1. Präsenzaufgabe: Pseudo-Gradient Vector Field.

(a) The idea is as follows: The map dπ(u) : H1(S1,R3) → TuM is surjective, so we can
find any w = w(u) ∈ H1(S1,R3) such that dπ(u)w ∈ TuM satisfies the desired conditions.
Then for all v ∈ M , the element dπ(v)w ∈ TvM is defined. We claim that there is some
neighbourhood Uu of u such that dπ(v)w satisfies the desired properties for all v ∈ Uu. If
this is proven we then proceed as usual by taking a locally finite refinement of the cover {Uu}
and a Lipschitz continuous partition of unity to sum up the corresponding vectors.

To prove the claim, recall that

‖(dπ(u)− dπ(v))w‖H1 ≤ C‖ν(u)− ν(v)‖H1‖w‖H1 ,

where both dπ(u)w and dπ(v)w are viewed as elements of H1. As the normal vector field ν is
smooth, and both u and v are (Hölder) continuous by Sobolev embedding, we can make this
difference arbitrarily small and therefore ‖dπ(v)w‖ < 1 for v close to u. From smoothness
it also follows that dπ(v)w is Lipschitz in a neighbourhood around u. As E ∈ C1(M) also
dE(u) depends continuously on u and therefore 〈dE(v), dπ(v)w〉T ∗

vM×TvM
> 1

2‖dE(v)‖ will
as well be satisfied for v close enough to u.

(b) The above construction nowhere used that S ⊆ R3, so it works analogue in the case of a
hypersurface in Rn. If the codimension codim(S,Rn) > 1, then we no longer have a normal
vector field but instead a normal vector bundle (whose dimension is k = codim(S,Rn)). Then
we choose an ONB e1(x), . . . , ek(x) of the normal vector bundle, depending continuously on
x ∈ S and then dπ(x)v = v − (e1(x) · v)e1(x)− . . .− (ek(x) · v)ek(x). The proof works then
similarly.

2. Flow Invariant Family. Let

P̃ = {p ∈ C0([0, π]n−2;H1(S1, S)}.
P = {p ∈ P̃ | p(ϑ1, . . . , ϑn−2) is a constant path if it exists i : ϑi ∈ {0, π}}.

Each p ∈ P then induces a map p : Sn−1 → S using the parametrization of Sn−1 via
S1 × [0, π]n−2. Call the diffeomorphism Ψ: S → Sn−1. Then we define the familiy

F = {p ∈ P | Ψ(p(ϑ1, . . . , ϑn−2)(ϕ)) is homotopic to id : Sn−1 → Sn−1}.

Let now Φ(t) be a 1-parameter family of homeomorphisms of H1(S1, S). Note that Φ(0) = id.
Let p ∈ F , i.e. the map Ψ(p(ϑ1, . . . , ϑn−2)(ϕ)) is homotopic to the identity.

Φ(1) ◦ p : [0, π]n−2 → H1(S1, S) is homotopic to p via the homotopy Φ(t) ◦ p. (Note that all
Φ(t) ◦ p are in particular elements of P , because Φ(t) maps constant maps to constant maps.)
Then we can use this homotopy in the sense of

(ϕ, ϑ1, . . . , ϑn−2, t) 7→ Ψ(Φ(t) ◦ p(ϑ1, . . . , ϑn−2)(ϕ))
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to show that Ψ(p(ϑ1, . . . , ϑn−2)(ϕ)) is homotopic to Ψ(Φ(1)◦p(ϑ1, . . . , ϑn−2)(ϕ)) which implies
that the latter is homotopic to the identity, so F is Φ-invariant.

3. Closed Geodesic. With exactly the same steps as in the lecture we can show that E
satisfies (P.-S.)β for all β ∈ R. As the family F is flowinvariant, we know that

β = inf
p∈F

sup
ϑi∈[0,π]

E(p(ϑ1, . . . ϑn−2))

is a critical value. We now need to show two things: If dE(u) = 0 for some u, then u is a
closed geodesic and on the other hand that β > 0 so that the closed geodesic we obtain is
not a trivial one.

Assume dE(u) = 0. Then for every ϕ ∈ H1(S1,Rn):

0 = 〈dE(u), ϕ− ν(u)(ν(u) · ϕ)〉

=
∫ 1

0
u̇ϕ̇− u̇ d

ds

(
ν(u)(ν(u) · ϕ)

)
ds

=
∫
u̇ϕ̇− u̇ · d

ds
(ν(u))(ν(u) · ϕ) ds,

because u̇(x) lies in the tangent space Tu(s)S and therefore is orthogonal to ν(u(s)). So we
get that in the sense of distributions

ü = −
(
u̇ · dν(u)u̇

)
ν(u). (1)

u̇ · dν(u)u̇ is an L1-function whereas ν(u) is bounded. So u ∈ W 2,1 ↪→ C1. Then u̇ ∈ C0 and
again by the above formula u ∈ C2 and in particular it satisfies (1) as function (not just in
the distributional sense), i.e. ü is proportional to ν(u) or, in other words, orthogonal to the
tangent space. This is the definition of a geodesic.

To prove that β > 0 we first bound the diameter of a function u ∈ H1(Sn,Rn) by

|u(t)− u(s)| ≤
∫ t

s
| ˙u(r)| dr ≤

√
|t− s|(2E(u)) 1

2 , 0 ≤ t, s ≤ 1.

This is < d (the radius in which the nearest neighbour projection is defined) if E(u) < d2

2 =: β0.
We will show that β ≥ β0.

Assume not. Then there is p ∈ F satisfying sup
ϑ1,...,ϑn−2∈[0,π]

E(p(ϑ1, . . . ϑn−2)) < β0. We will

prove that p is homotopic to a constant map. This gives then a contradiction, as Φ ◦ p was
assumed to be homotopic to the identiy and the identiy map Sn−1 → Sn−1 is not homotopic
to a trivial map.

Consider the following homotopy:

h(ϑ1, . . . , ϑn−2, s)(ϕ) = π
(
p(ϑ1, . . . , ϑn−2)(0) + s(p(ϑ1, . . . , ϑn−2)(ϕ)− p(ϑ1, . . . , ϑn−2)(0))

)
= π

(
sp(ϑ1, . . . , ϑn−2)(ϕ) + (1− s)p(ϑ1, . . . , ϑn−2)(0)

)
.
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From the first form we see that this is indeed well defined because |p(t′)− p(t)| < d for all
choices of choices of t and t′ as caluculated above. From the second form we see that this is
a homotopy between p(ϑ1, . . . , ϑn−2)(ϕ) and the constant maps p(ϑ1, . . . , ϑn−2)(0). We can
now find a further homotopiy contracting this to a constant map:

h̃(ϑ1, . . . ϑn−2, s1)(ϕ) = p(s1ϑ1 . . . ϑn−2)(0)

which contracts everything to the map p̃(ϑ1, . . . , ϑn−2)(ϕ) = p(0, ϑ1, . . . , ϑn−2)(ϕ), which is a
constant map by definition of F .
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