Prof. M. Struwe o ETH Ziirich
D-MATH Calculus of Variations 5th December 2014

Solution 10

1. Prasenzaufgabe: Pseudo-Gradient Vector Field.

(a) The idea is as follows: The map drn(u): H'(S',R3) — T,M is surjective, so we can
find any w = w(u) € H'(S',R?) such that dr(u)w € T, M satisfies the desired conditions.
Then for all v € M, the element dr(v)w € T,M is defined. We claim that there is some
neighbourhood U, of u such that dm(v)w satisfies the desired properties for all v € U,. If
this is proven we then proceed as usual by taking a locally finite refinement of the cover {U,}
and a Lipschitz continuous partition of unity to sum up the corresponding vectors.

To prove the claim, recall that
[(dm(u) — dr(v))wll g < Cllv(u) = v(©)|| gllw]] g1,

where both dn(u)w and dr(v)w are viewed as elements of H'. As the normal vector field v is
smooth, and both v and v are (Hélder) continuous by Sobolev embedding, we can make this
difference arbitrarily small and therefore ||dn(v)w|| < 1 for v close to u. From smoothness
it also follows that dm(v)w is Lipschitz in a neighbourhood around u. As E € C'(M) also
dE(u) depends continuously on u and therefore (dE(v), dm (V)W) puprsr, i > I dE(v)]] will
as well be satisfied for v close enough to u.

(b) The above construction nowhere used that S C R?, so it works analogue in the case of a
hypersurface in R”. If the codimension codim(S,R™) > 1, then we no longer have a normal
vector field but instead a normal vector bundle (whose dimension is & = codim(S,R")). Then

we choose an ONB e;(z), ..., ex(x) of the normal vector bundle, depending continuously on
x € S and then dr(x)v =v — (e1(x) - v)er(x) — ... — (ex(2) - v)ex(x). The proof works then
similarly.

2. Flow Invariant Family. Let
P ={pe C°([0,x]""* H'(S",9)}.
P={pecP|pWi,...,0,_2)is a constant path if it exists i : ; € {0,7}}.

Each p € P then induces a map p: S*! — S using the parametrization of S*~! via
St x [0, 7]"72. Call the diffeomorphism ¥: S — S"~!. Then we define the familiy

F={peP|YpW,..., 9 2)(p)) is homotopic to id: S" ' — §"1}.

Let now ®(t) be a 1-parameter family of homeomorphisms of H'(S!, S). Note that ®(0) = ud.
Let p € F, i.e. the map W(p(dy,...,Y,-2)(¢)) is homotopic to the identity.

®(1) op: [0,71]""2 — H'(S', S) is homotopic to p via the homotopy ®(¢) o p. (Note that all
®(t) o p are in particular elements of P, because ®(t) maps constant maps to constant maps.)
Then we can use this homotopy in the sense of

(0,01, ., 0o, t) = W(D(t) o p(V1, ..., 2)(p))
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to show that U(p(dy, ..., Y,—2)(¢)) is homotopic to U(P(1)op(dy, ..., ¥,—2)(¢)) which implies
that the latter is homotopic to the identity, so F is ®-invariant.

3. Closed Geodesic. With exactly the same steps as in the lecture we can show that F
satisfies (P.-S.)s for all § € R. As the family F is flowinvariant, we know that

f=inf sup E(p(Yi,...0,_2))

PEF 9,€[0,]

is a critical value. We now need to show two things: If dF(u) = 0 for some u, then u is a
closed geodesic and on the other hand that 8 > 0 so that the closed geodesic we obtain is
not a trivial one.

Assume dE(u) = 0. Then for every ¢ € H'(S!,R"):

0= (dE(u), o — v(u)(v(u) - ¢))

1

because (x) lies in the tangent space T,(s)S and therefore is orthogonal to v(u(s)). So we
get that in the sense of distributions

it = — (- dv(u)i)v(u). (1)

@ - dv(u)u is an L'-function whereas v(u) is bounded. So u € W?! < C1. Then u € C° and
again by the above formula u € C? and in particular it satisfies (1) as function (not just in
the distributional sense), i.e. i is proportional to v(u) or, in other words, orthogonal to the
tangent space. This is the definition of a geodesic.

To prove that 3 > 0 we first bound the diameter of a function v € H*(S",R") by

¢,
u(t) —u(s)| < / [u(r)|dr < /It = s|2E(w)>, 0<t,s<1.
This is < d (the radius in which the nearest neighbour projection is defined) if E'(u) < % =: Bo.
We will show that 5 > .
Assume not. Then there is p € F satisfying sup E(p(¥,...Y9,-2)) < Bo. We will
P1yeeny 1971_26[0,7@
prove that p is homotopic to a constant map. This gives then a contradiction, as ¢ o p was

assumed to be homotopic to the identiy and the identiy map S"~' — S"~! is not homotopic
to a trivial map.

Consider the following homotopy:

WD, V2, 5)(9) = T(p(D1, ., Dn2)(0) + s(p(V1, .., Vn2)(9) = (D1, ..., Un2)(0)))
=7 (sp(V1, ..., Dn2)(9) + (1= 8)p(Ds,. .., 0n2)(0)).
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From the first form we see that this is indeed well defined because |p(t') — p(t)| < d for all
choices of choices of ¢t and t' as caluculated above. From the second form we see that this is
a homotopy between p(dy,...,7,-2)(¢) and the constant maps p(dy,...,9,-2)(0). We can
now find a further homotopiy contracting this to a constant map:

h(01,...0n_9,81)(¢) = p(s191...9,-2)(0)

which contracts everything to the map p(dy,...,39,-2)(¢) = p(0,94,...,9,-2)(¢), which is a
constant map by definition of F.
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