Solution 12

1. Perturbation Theory.

(a) Fix the notation as follows:

$$
\begin{aligned}
\beta_{j} & =\inf _{h \in \Gamma} \sup _{u \in X_{j}} E(h(u)), \\
\delta_{j} & =\inf _{h \in \Gamma} \sup _{u \in X_{j}} \tilde{E}(h(u)), \\
X_{j+1}^{+} & =\left\{v+t \varphi_{j+1} \mid v \in X_{j}, t \geq 0\right\}, \\
\delta_{j}^{*} & =\inf _{h \in \Gamma} \sup _{u \in X_{j+1}^{+}} \tilde{E}(h(u)), \\
X & =H_{0}^{1}(\Omega) .
\end{aligned}
$$

We want to apply Theorem 2.6.2. from the lecture. \tilde{E} satisfies (P.-S.) ${ }_{\beta}$ for every $\beta \in \mathbb{R}$ and for $W=X_{j}, w^{*}=\varphi_{j+1}$ conditions i) to iii) from the Theorem are satisfied. So the only thing left to show is $\delta_{j}^{*}>\delta_{j}$, then there is a critical value $\gamma_{j}^{*} \geq \delta_{j}^{*}$, which will be $>\beta_{j}$, as we will see in the calculations below. The calculations will mostly follow the proof of Theorem 2.6.3.
Claim 1. For all $\varepsilon>0$ and every j, there is a constant $B=B(\varepsilon, j)$ such that $\left|\beta_{j}-\delta_{j}\right|<\varepsilon$, whenever $\|f\|_{2}<B$.

Proof. Choose $h \in \Gamma$ such that $\sup _{u \in X_{j}} E(h(u))<\beta_{j}+\frac{\varepsilon}{2}$.
We can find a radius $R>0$ such that for all $u \in X_{j}$ with $\|u\|_{H_{0}^{1}}>R$ it holds $\tilde{E}(u) \leq 0$ uniformly for all f with $\|f\|_{2}<1$. As X_{j} is finite dimensional, there is a constant L such that $h\left(\overline{B_{R}^{X_{j}}(0)}\right) \subseteq B_{L}^{X}(0)$, again for all f with $\|f\|_{2}<1$. Then we can estimate:

$$
\begin{aligned}
\delta_{j} & \leq \sup _{u \in X_{j}} \tilde{E}(h(u))=\sup _{u \in X_{j}, \tilde{E}(u) \geq 0} \tilde{E}(h(u)) \\
& \leq \sup _{u \in X_{j}, \tilde{E}(u) \geq 0} E(h(u))+\|f\|_{2}\|\underbrace{h(u)}_{\in B_{L}(0)}\|_{2} \\
& \leq \beta_{j}+\frac{\varepsilon}{2}+\|f\|_{2} L \sqrt{\lambda_{1}},
\end{aligned}
$$

where $\lambda_{1}=\inf _{0 \neq v \in C_{c}^{\infty}(\Omega)} \frac{\|\nabla u\|_{2}^{2}}{\|u\|_{2}^{2}}$. When choosing $B_{1}(\varepsilon, j)=\frac{\varepsilon}{2 L \sqrt{\lambda_{1}}}$ we get $\delta_{j}-\beta_{j}<\varepsilon$ and starting with \tilde{E} we get $\beta_{j}-\delta_{j}<\varepsilon$ for all $\|f\|_{2}<B_{2}(\varepsilon, j)$ and then we just need to take $B=\min \left\{B_{1}, B_{2}\right\}$.

This claim first of all implies that for $\|f\|_{2}<B\left(\frac{\beta_{j+1}-\beta_{j}}{2}, j\right)$ it holds

$$
\delta_{j}<\frac{\beta_{j}+\beta_{j+1}}{2} .
$$

Now we want to show $\delta_{j}^{*}>\frac{\beta_{j}+\beta_{j+1}}{2}$ for $\|f\|_{2}$ small enough, then we are done.
Assume $h \in \Gamma$ is such that $\sup _{u \in X_{j+1}^{+}} \tilde{E}(h(u))<\delta_{j}^{*}+\xi$, where $\xi>0$ is a number which will be determined later.
Claim 2. We may assume that $\sup _{u \in X_{j+1}^{+}} \tilde{E}(h(u))$ is attained in

$$
N:=\left\{u \in H_{0}^{1}(\Omega) \mid\|d \tilde{E}(u)\|_{H^{-1}}+\|d \tilde{E}(-u)\|_{H^{-1}} \leq 12\|f\|_{H^{-1}}\right\}
$$

in the sense of $\sup _{u \in X_{j+1}^{+}} \tilde{E}(h(u))=\sup _{v \in N} \tilde{E}(v)$.
Proof. Let \tilde{e} be the p.g.v.f. for E as in Theorem 2.5.1. and set

$$
e(v)=-\tau(\max \{\tilde{E}(v), \tilde{E}(-v)\}) \eta(v) \tilde{e}(v),
$$

with $\tau \in C^{\infty}(\mathbb{R}), \tau(s)=1$ if $s \geq \xi, \tau \in[0,1]$ and $\tau(s)=0$ if $s \leq 0$. η even with $\eta(v)=1$ for $v \notin N, \eta(v)=0$ for $\|d \tilde{E}(v)\|_{H^{-1}}+\|d \tilde{E}(-v)\|_{H^{-1}} \leq 8\|f\|_{H^{-1}}$.
Then similar to the lecture, for all $v \notin N$ with $\max \{\tilde{E}(v), \tilde{E}(-v)\} \geq \xi$ we have

$$
\begin{aligned}
-\langle d \tilde{E}(v), e(v)\rangle & =\langle d E(v)-f, \tilde{e}(v)\rangle \\
& \geq \frac{1}{2}\|d E(v)\|-\|f\| \\
& \geq \frac{1}{4}(\|d \tilde{E}(v)\|+\|d \tilde{E}(-v)\|-8\|f\|) \\
& \geq\|f\| .
\end{aligned}
$$

So taking large enough t, we will get that $\Phi(\cdot, t) \circ h$ satisfies the claim, because else we would fall below level δ_{j}^{*}.

We can then estimate:

$$
\begin{aligned}
& \delta_{j}^{*} \geq \sup _{u \in X_{j+1}^{+}} \tilde{E}(h(u))-\xi \\
& \geq \sup _{u \in X_{j+1}} \tilde{E}(h(u))-\sup _{v \in N,}|\tilde{E}(v)-\tilde{E}(-v)|-\xi \\
& \quad \min \{\tilde{E}(v), \tilde{E}(-v)\} \leq \delta_{j+1}+\xi \\
& \geq \delta_{j+1}-\xi-2\|f\|_{2} \sup _{v \in N}\|v\|_{2} . \\
& \quad \min \{\tilde{E}(v), \tilde{E}(-v)\} \leq \delta_{j+1}+\xi
\end{aligned}
$$

Claim 3. For all $v \in N$ with $\min \{\tilde{E}(u), \tilde{E}(-u)\} \leq \delta_{j+1}+\xi$ there is a constant $A=A(\xi, j)$ such that

$$
\|u\|_{2} \leq A
$$

uniformly for all $\|f\|_{2}<B(1, j)$.

Proof. We can assume w.l.o.g. $\tilde{E}(u) \leq \delta_{j+1}+\xi$, because $\|-u\|=\|u\|$.
On one hand we have

$$
\begin{aligned}
p E(u)-\langle d E(u), u\rangle & =\frac{p}{2}\|\nabla u\|_{2}^{2}-\|p\|_{p}^{1}-\|\nabla u\|_{2}^{2}+\|u\|_{p}^{2} \\
& =\frac{p-2}{2}\|\nabla u\|_{2}^{2}=c_{0}\|u\|_{H_{0}^{1}}^{2} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
p E(u)-\langle d E(u), u\rangle & =p \tilde{E}(u)+p \int f u d x-\langle d \tilde{E}(u), u\rangle-\langle f, u\rangle \\
& \leq p \tilde{E}(u)-\langle d \tilde{E}(u), u\rangle+c_{1}\|u\|_{2}\|f\|_{2} \\
& \leq p\left(\delta_{j+1}+\xi\right)+12\|f\|_{2}\|u\|+c_{1}\|u\|_{2} B \\
& \leq p\left(\beta_{j+1}+1+\xi\right)+12\|u\|_{2} B+c_{1}\|u\|_{2} B \\
& \leq c_{2}+c_{3}\|u\|_{H_{0}^{1}},
\end{aligned}
$$

where c_{2} depends on j and ξ. These two inequalities combined we get

$$
c_{0}\|u\|_{H_{0}^{1}}^{2} \leq c_{2}+c_{3}\|u\|_{H_{0}^{1}},
$$

from which we get a bound on $\|u\|_{H_{0}^{1}}$, which then gives a bound for $\|u\|_{2}$.
Inserting this, we get:

$$
\begin{aligned}
\delta_{j}^{*} & \geq \delta_{j+1}-\xi-2\|f\|_{2} A \\
& >\frac{\beta_{j+1}+\beta_{j}}{2},
\end{aligned}
$$

if we let $\xi=\frac{\beta_{j+1}-\beta_{j}}{8}$ and then let C_{j}, the bound on $\|f\|_{2}$ be the smaller of the numbers $B\left(\frac{\beta_{j+1}-\beta_{j}}{8}, j+1\right)$ as in Claim 1 or the number needed to have $2\|f\|_{2} A<\frac{\beta_{j+1}-\beta_{j}}{8}$.
(b) Let $\rho>0, h \in \Gamma$. Call $Y_{j}=\overline{\operatorname{span}\left\{\varphi_{j}, \varphi_{j+1}, \ldots\right\}}$ and $S_{\rho}=\left\{u \in H_{0}^{1}(\Omega) \mid\|u\|_{H_{0}^{1}}=\rho\right\}$ as in the lecture. Lemma 2.6.1. tells us that $\gamma\left(h\left(X_{j}\right) \cap S_{\rho} \cap Y_{j}\right) \geq 1$, so in particular $h\left(X_{j}\right) \cap S_{\rho} \cap Y_{j} \neq \emptyset$. This implies that for every $h \in \Gamma$, the image of X_{j} under h has to intersect with $S_{\rho} \cap Y_{j}$, so it holds

$$
\sup _{u \in X_{j}} E(h(u)) \geq \inf _{u \in Y_{j},\|u\|=\rho} E(u)
$$

for all $h \in \Gamma$, so also

$$
\begin{aligned}
& \beta_{j} \geq \inf _{u \in Y_{j},\|u\|=\rho} E(u) \\
\Rightarrow & \beta_{j} \geq \sup _{\rho>0} \inf _{u \in Y_{j},\|u\|=\rho} E(u) .
\end{aligned}
$$

To calculate $E(u)=\frac{1}{2}\|u\|_{H_{0}^{1}}^{2}-\frac{1}{p}\|u\|_{p}^{p}$, we use the interpolation formula with $r=n\left(1-\frac{p}{2^{*}}\right)=$ $p-\frac{n(p-2)}{2}$ and get

$$
\begin{aligned}
\|u\|_{p}^{p} & \leq\|u\|_{2}^{r}\|u\|_{2^{*}}^{p-r} \\
\Rightarrow E(u) & \geq \frac{1}{2} \rho^{2}-C \lambda_{j}^{-\frac{r}{2}} \rho^{p},
\end{aligned}
$$

where we used $\|u\|_{2} \leq \lambda_{j}^{-\frac{1}{2}}\|u\|_{H_{0}^{1}}$ for all $u \in Y_{j}$ and $\|u\|_{2^{*}} \leq S^{-1}\|u\|_{H_{0}^{1}}$, where S is the Sobolev constant.

To compute the supremum over all ρ we differentiate w.r.t. ρ and get that the supremum is attained at $\rho=\tilde{C} \lambda_{j}^{\frac{r}{2(p-2)}}$. Inserting this we get

$$
\beta_{j} \geq c_{0} \lambda_{j}^{\frac{r}{p-2}}
$$

Note that the exponent $\frac{r}{p-2}$ is positive for $2<p<2^{*}$, so this tends to ∞ for $j \rightarrow \infty$.
To get more precise estimates, we can use Weyl's law, which tells that $N(x) \sim x^{\frac{n}{2}}$, where $N(x)$ is the number of eigenvalues (with multiplicity) smaller than x, i.e. $N(x)=\left|\left\{j \mid \lambda_{j} \leq x\right\}\right|$, from which follows $\lambda_{j} \sim j^{\frac{2}{n}}$. Inserting this:

$$
\beta_{j} \geq c_{1} j^{\frac{2 r}{n(p-2)}}=c_{1} j^{\frac{2 p}{n(p-2)}-1} \rightarrow \infty .
$$

(c) Choose $J=J(k) \in \mathbb{N}$ such that at least k of the γ_{j}^{*} (see part (a)) are different for $j=1,2, \ldots, J$. Then set $\tilde{C}_{k}=C_{J}$.

