Solution 12

1. Perturbation Theory.

(a) Fix the notation as follows:

$$\beta_j = \inf_{h \in \Gamma} \sup_{u \in X_j} E(h(u)),$$

$$\delta_j = \inf_{h \in \Gamma} \sup_{u \in X_j} \tilde{E}(h(u)),$$

$$X_{j+1}^+ = \{v + t\varphi_{j+1} \mid v \in X_j, t \ge 0\},$$

$$\delta_j^* = \inf_{h \in \Gamma} \sup_{u \in X_{j+1}^+} \tilde{E}(h(u)),$$

$$X = H_0^1(\Omega).$$

We want to apply Theorem 2.6.2. from the lecture. \tilde{E} satisfies $(P.-S.)_{\beta}$ for every $\beta \in \mathbb{R}$ and for $W = X_j$, $w^* = \varphi_{j+1}$ conditions i) to iii) from the Theorem are satisfied. So the only thing left to show is $\delta_j^* > \delta_j$, then there is a critical value $\gamma_j^* \ge \delta_j^*$, which will be $> \beta_j$, as we will see in the calculations below. The calculations will mostly follow the proof of Theorem 2.6.3.

Claim 1. For all $\varepsilon > 0$ and every j, there is a constant $B = B(\varepsilon, j)$ such that $|\beta_j - \delta_j| < \varepsilon$, whenever $||f||_2 < B$.

Proof. Choose $h \in \Gamma$ such that $\sup_{u \in X_j} E(h(u)) < \beta_j + \frac{\varepsilon}{2}$.

We can find a radius R > 0 such that for all $u \in X_j$ with $||u||_{H_0^1} > R$ it holds $\tilde{E}(u) \leq 0$ uniformly for all f with $||f||_2 < 1$. As X_j is finite dimensional, there is a constant L such that $h(B_R^{X_j}(0)) \subseteq B_L^X(0)$, again for all f with $||f||_2 < 1$. Then we can estimate:

$$\delta_j \leq \sup_{u \in X_j} \tilde{E}(h(u)) = \sup_{u \in X_j, \tilde{E}(u) \ge 0} \tilde{E}(h(u))$$

$$\leq \sup_{u \in X_j, \tilde{E}(u) \ge 0} E(h(u)) + \|f\|_2 \|\underbrace{h(u)}_{\in B_L(0)}\|_2$$

$$\leq \beta_j + \frac{\varepsilon}{2} + \|f\|_2 L \sqrt{\lambda_1},$$

where $\lambda_1 = \inf_{0 \neq v \in C_c^{\infty}(\Omega)} \frac{\|\nabla u\|_2^2}{\|u\|_2^2}$. When choosing $B_1(\varepsilon, j) = \frac{\varepsilon}{2L\sqrt{\lambda_1}}$ we get $\delta_j - \beta_j < \varepsilon$ and starting with \tilde{E} we get $\beta_j - \delta_j < \varepsilon$ for all $\|f\|_2 < B_2(\varepsilon, j)$ and then we just need to take $B = \min\{B_1, B_2\}$.

This claim first of all implies that for $\|f\|_2 < B(\frac{\beta_{j+1}-\beta_j}{2},j)$ it holds

$$\delta_j < \frac{\beta_j + \beta_{j+1}}{2}.$$

Now we want to show $\delta_j^* > \frac{\beta_j + \beta_{j+1}}{2}$ for $||f||_2$ small enough, then we are done.

Assume $h \in \Gamma$ is such that $\sup_{u \in X_{j+1}^+} \tilde{E}(h(u)) < \delta_j^* + \xi$, where $\xi > 0$ is a number which will be determined later.

Claim 2. We may assume that $\sup_{u \in X_{j+1}^+} \tilde{E}(h(u))$ is attained in

$$N := \{ u \in H_0^1(\Omega) \mid \| d\tilde{E}(u)\|_{H^{-1}} + \| d\tilde{E}(-u)\|_{H^{-1}} \le 12 \| f \|_{H^{-1}} \}$$

in the sense of $\sup_{u \in X_{j+1}^+} \tilde{E}(h(u)) = \sup_{v \in N} \tilde{E}(v).$

Proof. Let \tilde{e} be the p.g.v.f. for E as in Theorem 2.5.1. and set

$$e(v) = -\tau(\max\{\tilde{E}(v), \tilde{E}(-v)\})\eta(v)\tilde{e}(v),$$

with $\tau \in C^{\infty}(\mathbb{R}), \tau(s) = 1$ if $s \ge \xi, \tau \in [0, 1]$ and $\tau(s) = 0$ if $s \le 0$. η even with $\eta(v) = 1$ for $v \not\in N, \eta(v) = 0$ for $\|d\tilde{E}(v)\|_{H^{-1}} + \|d\tilde{E}(-v)\|_{H^{-1}} \le 8\|f\|_{H^{-1}}$.

Then similar to the lecture, for all $v \notin N$ with $\max\{\tilde{E}(v), \tilde{E}(-v)\} \geq \xi$ we have

$$\begin{aligned} -\langle d\tilde{E}(v), e(v) \rangle &= \langle dE(v) - f, \tilde{e}(v) \rangle \\ &\geq \frac{1}{2} \| dE(v) \| - \| f \| \\ &\geq \frac{1}{4} \Big(\| d\tilde{E}(v) \| + \| d\tilde{E}(-v) \| - 8 \| f \| \Big) \\ &\geq \| f \|. \end{aligned}$$

So taking large enough t, we will get that $\Phi(\cdot, t) \circ h$ satisfies the claim, because else we would fall below level δ_i^* .

We can then estimate:

$$\begin{split} \delta_{j}^{*} &\geq \sup_{u \in X_{j+1}^{+}} \tilde{E}(h(u)) - \xi \\ &\geq \sup_{u \in X_{j+1}} \tilde{E}(h(u)) - \sup_{v \in N, \atop \min\{\tilde{E}(v), \tilde{E}(-v)\} \leq \delta_{j+1} + \xi} \\ &\geq \delta_{j+1} - \xi - 2 \|f\|_{2} \sup_{v \in N, \atop \min\{\tilde{E}(v), \tilde{E}(-v)\} \leq \delta_{j+1} + \xi} \|v\|_{2}. \end{split}$$

Claim 3. For all $v \in N$ with $\min\{\tilde{E}(u), \tilde{E}(-u)\} \leq \delta_{j+1} + \xi$ there is a constant $A = A(\xi, j)$ such that

 $||u||_2 \leq A$

uniformly for all $||f||_2 < B(1, j)$.

Proof. We can assume w.l.o.g. $\tilde{E}(u) \leq \delta_{j+1} + \xi$, because ||-u|| = ||u||. On one hand we have

$$pE(u) - \langle dE(u), u \rangle = \frac{p}{2} \|\nabla u\|_{2}^{2} - \|p\|_{p}^{1} - \|\nabla u\|_{2}^{2} + \|u\|_{p}^{2}$$
$$= \frac{p-2}{2} \|\nabla u\|_{2}^{2} = c_{0} \|u\|_{H_{0}^{1}}^{2}.$$

On the other hand

$$pE(u) - \langle dE(u), u \rangle = p\tilde{E}(u) + p \int fu \, dx - \langle d\tilde{E}(u), u \rangle - \langle f, u \rangle$$

$$\leq p\tilde{E}(u) - \langle d\tilde{E}(u), u \rangle + c_1 ||u||_2 ||f||_2$$

$$\leq p(\delta_{j+1} + \xi) + 12 ||f||_2 ||u|| + c_1 ||u||_2 B$$

$$\leq p(\beta_{j+1} + 1 + \xi) + 12 ||u||_2 B + c_1 ||u||_2 B$$

$$\leq c_2 + c_3 ||u||_{H_0^1},$$

where c_2 depends on j and ξ . These two inequalities combined we get

$$c_0 \|u\|_{H^1_0}^2 \le c_2 + c_3 \|u\|_{H^1_0},$$

from which we get a bound on $||u||_{H_0^1}$, which then gives a bound for $||u||_2$.

Inserting this, we get:

$$\delta_{j}^{*} \geq \delta_{j+1} - \xi - 2 \|f\|_{2} A$$

> $\frac{\beta_{j+1} + \beta_{j}}{2},$

if we let $\xi = \frac{\beta_{j+1}-\beta_j}{8}$ and then let C_j , the bound on $||f||_2$ be the smaller of the numbers $B(\frac{\beta_{j+1}-\beta_j}{8}, j+1)$ as in Claim 1 or the number needed to have $2||f||_2 A < \frac{\beta_{j+1}-\beta_j}{8}$.

(b) Let $\rho > 0$, $h \in \Gamma$. Call $Y_j = \overline{\operatorname{span}\{\varphi_j, \varphi_{j+1}, \ldots\}}$ and $S_\rho = \{u \in H_0^1(\Omega) \mid ||u||_{H_0^1} = \rho\}$ as in the lecture. Lemma 2.6.1. tells us that $\gamma(h(X_j) \cap S_\rho \cap Y_j) \ge 1$, so in particular $h(X_j) \cap S_\rho \cap Y_j \neq \emptyset$. This implies that for every $h \in \Gamma$, the image of X_j under h has to intersect with $S_\rho \cap Y_j$, so it holds

$$\sup_{u \in X_j} E(h(u)) \ge \inf_{u \in Y_j, \|u\| = \rho} E(u)$$

for all $h \in \Gamma$, so also

$$\beta_j \ge \inf_{\substack{u \in Y_j, \|u\| = \rho}} E(u)$$

$$\Rightarrow \beta_j \ge \sup_{\rho > 0} \inf_{\substack{u \in Y_j, \|u\| = \rho}} E(u)$$

To calculate $E(u) = \frac{1}{2} ||u||_{H_0^1}^2 - \frac{1}{p} ||u||_p^p$, we use the interpolation formula with $r = n(1 - \frac{p}{2^*}) = p - \frac{n(p-2)}{2}$ and get

$$\begin{aligned} \|u\|_{p}^{p} &\leq \|u\|_{2}^{r} \|u\|_{2^{*}}^{p-r} \\ \Rightarrow &E(u) \geq \frac{1}{2}\rho^{2} - C\lambda_{j}^{-\frac{r}{2}}\rho^{p}, \end{aligned}$$

where we used $||u||_2 \leq \lambda_j^{-\frac{1}{2}} ||u||_{H_0^1}$ for all $u \in Y_j$ and $||u||_{2^*} \leq S^{-1} ||u||_{H_0^1}$, where S is the Sobolev constant.

To compute the supremum over all ρ we differentiate w.r.t. ρ and get that the supremum is attained at $\rho = \tilde{C} \lambda_j^{\frac{r}{2(p-2)}}$. Inserting this we get

$$\beta_j \ge c_0 \lambda_j^{\frac{r}{p-2}}.$$

Note that the exponent $\frac{r}{p-2}$ is positive for $2 , so this tends to <math>\infty$ for $j \to \infty$.

To get more precise estimates, we can use Weyl's law, which tells that $N(x) \sim x^{\frac{n}{2}}$, where N(x) is the number of eigenvalues (with multiplicity) smaller than x, i.e. $N(x) = |\{j \mid \lambda_j \leq x\}|$, from which follows $\lambda_j \sim j^{\frac{2}{n}}$. Inserting this:

$$\beta_j \ge c_1 j^{\frac{2r}{n(p-2)}} = c_1 j^{\frac{2p}{n(p-2)}-1} \to \infty.$$

(c) Choose $J = J(k) \in \mathbb{N}$ such that at least k of the γ_j^* (see part (a)) are different for $j = 1, 2, \ldots, J$. Then set $\tilde{C}_k = C_J$.