Solution 2

1. Präsenzaufgabe

(a) Let $u \in M$. To show coerciveness of E, we estimate $E(u)$ from below.

$$
E(u)=\int_{0}^{d}\left(\sqrt{1+\left|u^{\prime}\right|^{2}}+u\right) d x \geq \int_{0}^{d} \sqrt{1+\left|u^{\prime}\right|} d x-\int_{0}^{d}|u| d x .
$$

To estimate the negative term we use the following trick.

$$
\begin{aligned}
& x \in\left[0, \frac{d}{2}\right] \Rightarrow|u(x)|=\left|\int_{0}^{x} u^{\prime}(y) d y\right| \leq \int_{0}^{\frac{d}{2}}\left|u^{\prime}(y)\right| d y \leq \int_{0}^{\frac{d}{2}} \sqrt{1+\left|u^{\prime}\right|} d y \\
& x \in\left[\frac{d}{2}, d\right] \Rightarrow|u(x)|=\left|-\int_{x}^{d} u^{\prime}(y) d y+u(d)\right| \leq \int_{\frac{d}{2}}^{d}\left|u^{\prime}(y)\right| d y+1 \leq \int_{\frac{d}{2}}^{d} \sqrt{1+\left|u^{\prime}\right|} d y+1
\end{aligned}
$$

This allows us to estimate

$$
\begin{aligned}
\int_{0}^{d}|u(x)| d x & =\int_{0}^{\frac{d}{2}}|u(x)| d x+\int_{\frac{d}{2}}^{d}|u(x)| d x \\
& \leq \frac{d}{2} \int_{0}^{\frac{d}{2}} \sqrt{1+\left|u^{\prime}\right|^{2}} d y+\frac{d}{2} \int_{\frac{d}{2}}^{d} \sqrt{1+\left|u^{\prime}\right|^{2}} d y+\frac{d}{2} \\
& =\frac{d}{2} \int_{0}^{d} \sqrt{1+\left|u^{\prime}\right|^{2}} d y+\frac{d}{2} .
\end{aligned}
$$

Therefore,

$$
E(u) \geq\left(1-\frac{d}{2}\right) \int_{0}^{d} \sqrt{1+\left|u^{\prime}\right|^{2}} d x-\frac{d}{2}
$$

As $\left(1-\frac{d}{2}\right)>0$, we get that E is coercive as claimed.
(b) Consider the sequence $\left(u_{k}\right) \subset M$ where $u_{k}(x)$ is given by the values $u_{k}(0)=0, u_{k}(\varepsilon)=-k$, $u_{k}\left(d-\varepsilon-\frac{\varepsilon}{k}\right)=-k, u_{k}(d)=1$ and linear interpolation in between. We assume $0<\varepsilon \ll 1 \leq k$ and compute

$$
\begin{aligned}
& \qquad \begin{aligned}
\int_{0}^{d} u_{k} d x & =-k\left(d-\varepsilon-\frac{\varepsilon}{k}\right)+\frac{\varepsilon}{2 k} \\
& <-k(d-\varepsilon)+1,
\end{aligned} \\
& \int_{0}^{d} \sqrt{1+\left|u_{k}^{\prime}\right|^{2}} d x \\
& =\left(2 \varepsilon+\frac{\varepsilon}{k}\right) \sqrt{1+\left(\frac{k}{\varepsilon}\right)^{2}} \\
& \\
& \leq\left(2 \varepsilon+\frac{\varepsilon}{k}\right)\left(\frac{k}{\varepsilon}+\frac{\varepsilon}{2 k}\right) \\
& \\
& \\
& \\
& \leq 2 k+1+\frac{\varepsilon^{2}}{k}+\frac{\varepsilon^{2}}{2 k^{2}}
\end{aligned}
$$

We conclude

$$
E\left(u_{k}\right) \leq 2 k-k(d-\varepsilon)+3=(2-d+\varepsilon) k+3 .
$$

If $d>2$, there exists $\varepsilon>0$ such that $(2-d+\varepsilon)<0$ and we obtain $E\left(u_{k}\right) \rightarrow-\infty$ for $k \rightarrow \infty$.
(c) For $d=2$ we choose the sequence u_{k} from above and set $\varepsilon=\frac{1}{k}$ for each $k \in \mathbb{N}$. Then the same estimate yields $E\left(u_{k}\right) \leq \varepsilon k+3=4$, which contradicts coerciveness as $\left\|u_{k}\right\|_{W^{1,1}} \rightarrow \infty$. From the final estimate in (a) we deduce $E(u) \geq-1$ if $d=2$.

2. Minimisation of General Functionals.

We want to apply Theorem 1.1.1. from the lecture to this functional. Therefore we realize that $H_{0}^{1}(\Omega)$ is reflexive and E is coercive because $E(u)=\int_{\Omega} f(x, u, \nabla u) d x \geq \int_{\Omega}|\nabla u|^{2} d x$, which tends to ∞ whenever $\|u\|_{H_{0}^{1}} \rightarrow \infty$.

What is left to show is that E is weakly sequentially lower semicontiuous. Let $u_{m} \xrightarrow{\mathrm{w}} u$ in $H_{0}^{1}(\Omega)$. By considering only the subsequence on which $\left(E\left(u_{k}\right)\right)_{k}$ approaches its limes inferior we may assume that $\left(E\left(u_{k}\right)\right)_{k}$ is convergent.

Since the embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ is compact, we may extract a subsequence such that $u_{k} \rightarrow u$ converges in $L^{2}(\Omega)$ which again allows a subsequence converging pointwise almost everywhere. We will use this to conclude Step 2.
Step 1. As $\nabla u_{k} \xrightarrow{\mathrm{w}} \nabla u$ in $L^{2}(\Omega)$, by Mazur's Lemma (Satz 4.6.2. from the FAI-script), there exist norm-convergent convex linear combinations

$$
P_{\ell}=\sum_{m=m_{0}}^{\ell} a_{\ell}^{m} \nabla u_{m} \xrightarrow{\|\cdot\|_{L^{2}(\Omega)}} \nabla u, \quad \sum_{m=m_{0}}^{\ell} a_{\ell}^{m}=1, \quad a_{\ell}^{m}>0
$$

We may reduce $\left(P_{\ell}\right)_{\ell}$ to a subsequence converging pointwise almost everywhere. This makes $\left(f\left(x, u, P_{\ell}\right)\right)_{\ell}$ a sequence of non-negative functions converging pointwise on Ω neglecting a set of measure zero and the Lemma of Fatou applies.

$$
\begin{aligned}
\int_{\Omega} f(x, u, \nabla u) d x & \leq \liminf _{\ell \rightarrow \infty} \int_{\Omega} f\left(x, u, P_{\ell}\right) d x \\
& \leq \liminf _{\ell \rightarrow \infty} \sum_{m=m_{0}}^{\ell} a_{\ell}^{m} \int_{\Omega} f\left(x, u, \nabla u_{m}\right) d x \\
& \leq \sup _{m \geq m_{0}} \int_{\Omega} f\left(x, u, \nabla u_{m}\right) d x \\
& \leq \limsup _{m \rightarrow \infty} \int_{\Omega} f\left(x, u, \nabla u_{m}\right) d x .
\end{aligned}
$$

Step 2. (Eisen) The functions $g_{m}=f\left(\cdot, u_{m}, \nabla u_{m}\right)-f\left(\cdot, u, \nabla u_{m}\right)$ converge in measure to zero.

To ease notation, the prefix $\{x \in \Omega \mid \ldots\}$ is omitted when specifying sets. Assume, for contradiction, there exists $\varepsilon_{0}>0$ such that for every m in a subsequence $\Lambda_{1} \subset \mathbb{N}$

$$
0<\delta \leq\left|\left\{\left|g_{m}(x)\right| \geq \varepsilon_{0}\right\}\right| .
$$

The weakly convergent sequence ∇u_{m} is bounded in $L^{2}(\Omega)$ uniformly with respect to m (Banach-Steinhaus). Therefore, there exists some large b (of order $\delta^{-1 / 2}$) such that

$$
\left|\left\{\left|\nabla u_{m}(x)\right| \geq b\right\}\right|<\frac{1}{2} \delta
$$

for all m, which then implies $\frac{1}{2} \delta<\left|\Omega_{m}\right|$, where

$$
\Omega_{m}:=\left\{\left|g_{m}(x)\right| \geq \varepsilon_{0},\left|\nabla u_{m}(x)\right|<b\right\} .
$$

Moreover, since Ω is bounded, the set Q of all $x \in \Omega$ which appear for infinitely many m has positive measure $|Q|>0$. Note that

$$
Q:=\bigcap_{n=1}^{\infty} \bigcup_{\Lambda_{1} \ni m \geq n} \Omega_{m} .
$$

It therefore intersects nontrivially with $W=\left\{u_{m}(x) \rightarrow u(x)\right\}$, the set of pointwise convergence. Choose $x_{0} \in Q \cap W$ and collect $\Lambda_{2}=\left\{m \in \Lambda_{1} \mid x_{0} \in \Omega_{m}\right\}$. By construction, $\nabla u_{m}\left(x_{0}\right)$ is bounded and therefore converges on a subsequence $\Lambda_{3} \subset \Lambda_{2}$ to some $p \in \mathbb{R}^{n}$. Since convexity in \mathbb{R}^{n} implies continuity, we may conclude both

$$
\begin{aligned}
f\left(x_{0}, u\left(x_{0}\right), \nabla u_{m}\left(x_{0}\right)\right) & \rightarrow f\left(x_{0}, u\left(x_{0}\right), p\right), \\
f\left(x_{0}, u_{m}\left(x_{0}\right), \nabla u_{m}\left(x_{0}\right)\right) & \rightarrow f\left(x_{0}, u\left(x_{0}\right), p\right)
\end{aligned}
$$

as $\Lambda_{3} \ni m \rightarrow \infty$. This finally contradicts $\left|g_{m}\left(x_{0}\right)\right| \geq \varepsilon_{0}$.
Step 3. Since g_{m} converges in measure, we can extract a subsequence which converges pointwise almost everywhere. Moreover, by Egorov's Theorem, for every $\delta>0$ there exists a set Ω_{δ} of measure $\left|\Omega_{\delta}\right|<\delta$ such that $g_{m}(x)$ converges uniformly with respect to $x \in \Omega \backslash \Omega_{\delta}$. In particular, for any $\varepsilon>0$ there is $N \in \mathbb{N}$ such that for every $m \geq N$ and every $x \in \Omega \backslash \Omega_{\delta}$

$$
f\left(x, u(x), \nabla u_{m}(x)\right)<f\left(x, u_{m}(x), \nabla u_{m}(x)\right)+\varepsilon .
$$

Fix $\varepsilon>0$. Applying the integral estimates from Step 1 in $\Omega \backslash \Omega_{\delta}$ we obtain

$$
\begin{align*}
\int_{\Omega \backslash \Omega_{\delta}} f(x, u, \nabla u) d x & \leq \limsup _{m \rightarrow \infty} \int_{\Omega \backslash \Omega_{\delta}} f\left(x, u, \nabla u_{m}\right) d x \\
& \leq \limsup _{m \rightarrow \infty} \int_{\Omega \backslash \Omega_{\delta}} f\left(x, u_{m}, \nabla u_{m}\right) d x+\varepsilon|\Omega| \\
& \leq \lim _{m \rightarrow \infty} E\left(u_{m}\right)+\varepsilon|\Omega| .
\end{align*}
$$

Finally, for any $\eta>0$ there exists $\delta>0$ and a corresponding set Ω_{δ} such that

$$
\int_{\Omega_{\delta}} f(x, u, \nabla u) d x \leq \eta
$$

since $f(x, u, \nabla u) \leq C|\nabla u|^{2}+C$ is integrable. We conclude

$$
E(u) \leq \lim _{m \rightarrow \infty} E\left(u_{k}\right)+\varepsilon|\Omega|+\eta
$$

for any $\varepsilon, \eta>0$ which completes the proof.

3. Weak Maximum Principle

(a) Consider the function $\varphi(x)=u_{+}(x)=\max \{u(x), 0\}$. We have that $\varphi \in H_{0}^{1}(\Omega)$ with weak derivative

$$
\nabla \varphi(x)= \begin{cases}\nabla u(x) & \text { if } u \geq 0 \\ 0 & \text { if } u \leq 0\end{cases}
$$

Inserting φ into the test equation we get:

$$
\begin{aligned}
0 & \geq \sum \int_{\Omega} a^{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial u_{+}}{\partial x_{j}} d x+\int_{\Omega} c u u_{+} d x \\
& =\sum \int_{\Omega} a^{i j} \frac{\partial u_{+}}{\partial x_{i}} \frac{\partial u_{+}}{\partial x_{j}} d x+\int_{\Omega} c u u_{+} d x \\
& \geq \lambda\left\|\nabla u_{+}\right\|^{2}+\int_{\Omega} c u u_{+} d x \geq \lambda\left\|\nabla u_{+}\right\|^{2}
\end{aligned}
$$

where the second-last inequality follows from the uniform positiv definiteness of ($a^{i j}$) and the last inequality follows from positiveness of c. Therefore $\nabla u_{+}=0$ a.e. and as $u_{+} \in H_{0}^{1}$, $u_{+}=0$ a.e., so $u \leq 0$ on Ω.
(b) The same calculations as above can be applied to $u+\alpha$, if $\alpha \leq 0$ and the conclusion will hold similarly. We can use this for $\alpha=\inf _{\partial \Omega} u \leq 0$. Then we can as well modify the proof so that for u a weak supersolution with $u \geq 0$ on $\partial \Omega$ we have $u \geq 0$ a.e.

