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Solution 2

1. Präsenzaufgabe

(a) Let u ∈M . To show coerciveness of E, we estimate E(u) from below.

E(u) =
∫ d

0
(
√

1 + |u′|2 + u) dx ≥
∫ d

0

√
1 + |u′| dx−

∫ d

0
|u| dx.

To estimate the negative term we use the following trick.

x ∈ [0, d2 ] ⇒ |u(x)| =
∣∣∣∫ x

0
u′(y) dy

∣∣∣ ≤ ∫ d
2

0
|u′(y)| dy ≤

∫ d
2

0

√
1 + |u′| dy,

x ∈ [d2 , d] ⇒ |u(x)| =
∣∣∣− ∫ d

x
u′(y) dy + u(d)

∣∣∣ ≤ ∫ d

d
2

|u′(y)| dy + 1 ≤
∫ d

d
2

√
1 + |u′| dy + 1.

This allows us to estimate∫ d

0
|u(x)| dx =

∫ d
2

0
|u(x)| dx+

∫ d

d
2

|u(x)| dx

≤ d

2

∫ d
2

0

√
1 + |u′|2 dy + d

2

∫ d

d
2

√
1 + |u′|2 dy + d

2

= d

2

∫ d

0

√
1 + |u′|2 dy + d

2 .

Therefore,

E(u) ≥ (1− d

2)
∫ d

0

√
1 + |u′|2 dx− d

2 .

As (1− d
2) > 0, we get that E is coercive as claimed.

(b) Consider the sequence (uk) ⊂M where uk(x) is given by the values uk(0) = 0, uk(ε) = −k,
uk(d−ε− ε

k
) = −k, uk(d) = 1 and linear interpolation in between. We assume 0 < ε� 1 ≤ k

and compute

∫ d

0
uk dx = −k(d− ε− ε

k
) + ε

2k

< −k(d− ε) + 1,∫ d

0

√
1 + |u′k|2 dx = (2ε+ ε

k
)
√

1 + (k
ε
)2

≤ (2ε+ ε
k
)(k
ε

+ ε
2k )

= 2k + 1 + ε2

k
+ ε2

2k2

≤ 2k + 2,

where we used
√

1 + s2 ≤ (s+ 1
2s) for s > 0.

+
d

+
ε

+
d − ε − ε

k

+1

+−k
uk
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We conclude

E(uk) ≤ 2k − k(d− ε) + 3 = (2− d+ ε)k + 3.

If d > 2, there exists ε > 0 such that (2− d+ ε) < 0 and we obtain E(uk)→ −∞ for k →∞.

(c) For d = 2 we choose the sequence uk from above and set ε = 1
k
for each k ∈ N. Then the

same estimate yields E(uk) ≤ εk + 3 = 4, which contradicts coerciveness as ‖uk‖W 1,1 →∞.
From the final estimate in (a) we deduce E(u) ≥ −1 if d = 2.

2. Minimisation of General Functionals.

We want to apply Theorem 1.1.1. from the lecture to this functional. Therefore we realize
that H1

0 (Ω) is reflexive and E is coercive because E(u) =
∫

Ω f(x, u,∇u) dx ≥ ∫
Ω|∇u|2 dx,

which tends to ∞ whenever ‖u‖H1
0
→∞.

What is left to show is that E is weakly sequentially lower semicontiuous. Let um w
⇁ u in

H1
0 (Ω). By considering only the subsequence on which (E(uk))k approaches its limes inferior

we may assume that (E(uk))k is convergent.

Since the embedding H1
0 (Ω) ↪→ L2(Ω) is compact, we may extract a subsequence such that

uk → u converges in L2(Ω) which again allows a subsequence converging pointwise almost
everywhere. We will use this to conclude Step 2.

Step 1. As ∇uk w
⇁ ∇u in L2(Ω), by Mazur’s Lemma (Satz 4.6.2. from the FAI-script), there

exist norm-convergent convex linear combinations

P` =
∑̀

m=m0

am` ∇um
‖·‖L2(Ω)−−−−→ ∇u,

∑̀
m=m0

am` = 1, am` > 0.

We may reduce (P`)` to a subsequence converging pointwise almost everywhere. This makes
(f(x, u, P`))` a sequence of non-negative functions converging pointwise on Ω neglecting a set
of measure zero and the Lemma of Fatou applies.∫

Ω
f(x, u,∇u) dx ≤ lim inf

`→∞

∫
Ω
f(x, u, P`) dx (Fatou)

≤ lim inf
`→∞

∑̀
m=m0

am`

∫
Ω
f(x, u,∇um) dx (convexity)

≤ sup
m≥m0

∫
Ω
f(x, u,∇um) dx

≤ lim sup
m→∞

∫
Ω
f(x, u,∇um) dx. (m0 →∞)

Step 2. (Eisen) The functions gm = f(·, um,∇um) − f(·, u,∇um) converge in measure to
zero.

To ease notation, the prefix {x ∈ Ω | . . .} is omitted when specifying sets. Assume, for
contradiction, there exists ε0 > 0 such that for every m in a subsequence Λ1 ⊂ N

0 < δ ≤
∣∣∣{|gm(x)| ≥ ε0

}∣∣∣.
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The weakly convergent sequence ∇um is bounded in L2(Ω) uniformly with respect to m
(Banach-Steinhaus). Therefore, there exists some large b (of order δ−1/2) such that∣∣∣{|∇um(x)| ≥ b

}∣∣∣ < 1
2δ

for all m, which then implies 1
2δ < |Ωm|, where

Ωm :=
{
|gm(x)| ≥ ε0, |∇um(x)| < b

}
.

Moreover, since Ω is bounded, the set Q of all x ∈ Ω which appear for infinitely many m has
positive measure |Q| > 0. Note that

Q :=
∞⋂
n=1

⋃
Λ13m≥n

Ωm.

It therefore intersects nontrivially withW = {um(x)→ u(x)}, the set of pointwise convergence.
Choose x0 ∈ Q ∩W and collect Λ2 = {m ∈ Λ1 | x0 ∈ Ωm}. By construction, ∇um(x0) is
bounded and therefore converges on a subsequence Λ3 ⊂ Λ2 to some p ∈ Rn. Since convexity
in Rn implies continuity, we may conclude both

f
(
x0, u(x0),∇um(x0)

)
→ f(x0, u(x0), p),

f
(
x0, um(x0),∇um(x0)

)
→ f(x0, u(x0), p)

as Λ3 3 m→∞. This finally contradicts |gm(x0)| ≥ ε0.

Step 3. Since gm converges in measure, we can extract a subsequence which converges
pointwise almost everywhere. Moreover, by Egorov’s Theorem, for every δ > 0 there exists a
set Ωδ of measure |Ωδ| < δ such that gm(x) converges uniformly with respect to x ∈ Ω \ Ωδ.
In particular, for any ε > 0 there is N ∈ N such that for every m ≥ N and every x ∈ Ω\Ωδ

f
(
x, u(x),∇um(x)

)
< f

(
x, um(x),∇um(x)

)
+ ε.

Fix ε > 0. Applying the integral estimates from Step 1 in Ω \ Ωδ we obtain∫
Ω\Ωδ

f(x, u,∇u) dx ≤ lim sup
m→∞

∫
Ω\Ωδ

f(x, u,∇um) dx

≤ lim sup
m→∞

∫
Ω\Ωδ

f(x, um,∇um) dx+ ε|Ω|

≤ lim
m→∞

E(um) + ε|Ω|. (f ≥ 0)

Finally, for any η > 0 there exists δ > 0 and a corresponding set Ωδ such that∫
Ωδ
f(x, u,∇u) dx ≤ η

since f(x, u,∇u) ≤ C|∇u|2 + C is integrable. We conclude

E(u) ≤ lim
m→∞

E(uk) + ε|Ω|+ η

for any ε, η > 0 which completes the proof.
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3. Weak Maximum Principle

(a) Consider the function ϕ(x) = u+(x) = max{u(x), 0}. We have that ϕ ∈ H1
0 (Ω) with

weak derivative

∇ϕ(x) =
∇u(x) if u ≥ 0

0 if u ≤ 0.

Inserting ϕ into the test equation we get:

0 ≥
∑∫

Ω
aij

∂u

∂xi

∂u+

∂xj
dx+

∫
Ω
cuu+ dx

=
∑∫

Ω
aij
∂u+

∂xi

∂u+

∂xj
dx+

∫
Ω
cuu+ dx

≥ λ‖∇u+‖2 +
∫

Ω
cuu+ dx ≥ λ‖∇u+‖2

where the second-last inequality follows from the uniform positiv definiteness of (aij) and
the last inequality follows from positiveness of c. Therefore ∇u+ = 0 a.e. and as u+ ∈ H1

0 ,
u+ = 0 a.e., so u ≤ 0 on Ω.

(b) The same calculations as above can be applied to u+ α, if α ≤ 0 and the conclusion will
hold similarly. We can use this for α = inf∂Ω u ≤ 0. Then we can as well modify the proof so
that for u a weak supersolution with u ≥ 0 on ∂Ω we have u ≥ 0 a.e.
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