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Solution 2

1. Prasenzaufgabe

(a) Let u € M. To show coerciveness of E, we estimate E(u) from below.
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B :/ 1+ | d>/ 1 ’d—/ dz.
= [P e > [ lde— [l do

To estimate the negative term we use the following trick.
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This allows us to estimate
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Therefore,

E(u) > (1— Z)/Od\/u P do — &

As (1 — %) >0, we get that E is coercive as claimed.

(b) Consider the sequence (uy) C M where uy(x) is given by the values uy(0) = 0, ugx(c) = —k,
up(d—e—7) = —k, ug(d) = 1 and linear interpolation in between. We assume 0 < e < 1 <k
and compute

d 1+
/0 updr = —k(d—e— £) + £
< —k(d—e)+1,

/ V1) do = (22 + £)y/1 4 (5)2 £ | d

< (25+E)(§+2€?)

2 2
=2k+1+%+ 52
<2k +2,

where we used 1+ 52 < (s + 5) for s > 0. sl
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We conclude
Eug) <2k —k(d—¢e)+3=(2—-d+¢e)k+ 3.
If d > 2, there exists € > 0 such that (2 —d+¢) < 0 and we obtain E(uy) — —oo for k — 0.

(c) For d =2 we choose the sequence uy, from above and set e = ¢ for each k € N. Then the
same estimate yields E(uy) < ek + 3 = 4, which contradicts coerciveness as ||ug|| 11 — 0.
From the final estimate in (a) we deduce F(u) > —1if d = 2.

2. Minimisation of General Functionals.

We want to apply Theorem 1.1.1. from the lecture to this functional. Therefore we realize
that H}(Q) is reflexive and E is coercive because E(u) = [, f(x,u, Vu)dz > [,|Vul* dz,
which tends to co whenever HuHHé — 0.

What is left to show is that F is weakly sequentially lower semicontiuous. Let u,, — u in
H{(S2). By considering only the subsequence on which (F(uy))x approaches its limes inferior
we may assume that (F(ug))y is convergent.

Since the embedding Hj(2) < L?*(2) is compact, we may extract a subsequence such that
uy, — u converges in L?(€)) which again allows a subsequence converging pointwise almost
everywhere. We will use this to conclude Step 2.

Step 1. As Vuy ~ Vu in L*(Q), by Mazur’s Lemma (Satz 4.6.2. from the FAI-script), there
exist norm-convergent convex linear combinations

¢
Il L2
Py= > a'Vu, —9 Vu, o oaft=1, a;* > 0.

m=m m=mg

We may reduce (F;), to a subsequence converging pointwise almost everywhere. This makes
(f(x,u, Pp))s a sequence of non-negative functions converging pointwise on {2 neglecting a set
of measure zero and the Lemma of Fatou applies.

/ f(z,u, Vu)dx < hm 1nf f(x u, Py) dx (Fatou)
< lil;g ioglf m;m ay’ /Q flz,u, Vu,) dx (convexity)
< sup | f(z,u, Vuy)de

m>mg /2
< lim sup f(:z: u, Vi) dz. (my — 00)
m—0o0

Step 2. (Eisen) The functions ¢,, = f(+, um, V) — f(-,u, Vu,,) converge in measure to
7Zero.

To ease notation, the prefix {x € Q | ...} is omitted when specifying sets. Assume, for
contradiction, there exists €y > 0 such that for every m in a subsequence Ay C N

0 <8< [{lgm()| = 20}|.
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The weakly convergent sequence Vu,, is bounded in L?*(2) uniformly with respect to m
(Banach-Steinhaus). Therefore, there exists some large b (of order §~'/2) such that

{IVum(@)] 2 0} < 36
for all m, which then implies %5 < ||, where

U = {gm(2)] > 0, [Vuum(z)| < b}.

Moreover, since €2 is bounded, the set ) of all x € 2 which appear for infinitely many m has
positive measure |@| > 0. Note that

Q= ﬂ U Q,,.
n=1 A15m>n

It therefore intersects nontrivially with W' = {u,,(z) — u(x)}, the set of pointwise convergence.
Choose xp € @ N W and collect Ay = {m € A; | 29 € Q,,}. By construction, Vu,,(zq) is
bounded and therefore converges on a subsequence A3 C Ay to some p € R™. Since convexity
in R™ implies continuity, we may conclude both

f (0, u(@o), Vit (x0) ) = f (o, u(o), p),
f(xo, Um (o), Vum(xo)) — f(zo, u(zo), p)

as A3  m — oo. This finally contradicts |g,(zo)| > €o.

Step 3. Since g, converges in measure, we can extract a subsequence which converges
pointwise almost everywhere. Moreover, by Egorov’s Theorem, for every § > 0 there exists a
set Qs of measure |25| < § such that g,,(x) converges uniformly with respect to = € 2\ Qs.
In particular, for any € > 0 there is N € N such that for every m > N and every z € 2\ {2

f(x, u(z), Vum(x)) < f(x, U (), Vum(l’)) +e.

Fix e > 0. Applying the integral estimates from Step 1 in 2\ Qs we obtain

/ f(z,u, Vu) dr < limsup f(z,u, Vuy,)dx
O\

m—oo  JO\Qs

< lim sup (@, U, Vuy,) doe + £[Q

m—oo  JO\Qs

< lim E(un) +£[Q. (f >0)

Finally, for any n > 0 there exists > 0 and a corresponding set {25 such that
/ fla,u, Vu)de <1
Qs

since f(z,u, Vu) < C|Vu|* + C is integrable. We conclude
B(u) < lim B(u) + €@ + 7

for any €, > 0 which completes the proof.
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3. Weak Maximum Principle
(a) Consider the function ¢(r) = uy(r) = max{u(z),0}. We have that ¢ € Hj(Q2) with

weak derivative

Vu(z) ifu>0

Veplr) = {0 if u<0.

Inserting ¢ into the test equation we get:

ij Ou Ous

OZZ/QG Dz: O d:):+/ﬂcuu+dx

- Ouy Ou
:Z/Qaw axjaa;der/chqudx

> |V |2 +/chu+ dr > N[V |2

where the second-last inequality follows from the uniform positiv definiteness of (a*/) and
the last inequality follows from positiveness of c¢. Therefore Vu, = 0 a.e. and as u, € Hg,
uy =0a.e., sou<0on 2.

(b) The same calculations as above can be applied to u+ «, if @ < 0 and the conclusion will
hold similarly. We can use this for & = infsq v < 0. Then we can as well modify the proof so
that for u a weak supersolution with u > 0 on 02 we have u > 0 a.e.



